The methodology of Green's function retrieval by cross-correlation has led to many interesting applications for passive and controlled-source acoustic measurements. In all applications, a virtual source is created at the position of a receiver. Here a method is discussed for Green's function retrieval from controlled-source reflection data, which circumvents the requirement of having an actual receiver at the position of the virtual source. The method requires, apart from the reflection data, an estimate of the direct arrival of the Green's function. A single-sided three-dimensional (3D) Marchenko equation underlies the method. This equation relates the reflection response, measured at one side of the medium, to the scattering coda of a so-called focusing function. By iteratively solving the 3D Marchenko equation, this scattering coda is retrieved from the reflection response. Once the scattering coda has been resolved, the Green's function (including all multiple scattering) can be constructed from the reflection response and the focusing function. The proposed methodology has interesting applications in acoustic imaging, properly accounting for internal multiple scattering.

1.
G. L.
Lamb
,
Elements of Soliton Theory
(
John Wiley and Sons, Inc.
,
New York
,
1980
), pp.
46
67
.
2.
R.
Burridge
, “
The Gelfand-Levitan, the Marchenko, and the Gopinath-Sondhi integral equations of inverse scattering theory, regarded in the context of inverse impulse-response problems
,”
Wave Motion
2
,
305
323
(
1980
).
3.
D. B.
Ge
, “
An iterative technique in one-dimensional profile inversion
,”
Inverse Probl.
3
,
399
406
(
1987
).
4.
K.
Chadan
and
P. C.
Sabatier
,
Inverse Problems in Quantum Scattering Theory
(
Springer
,
Berlin
,
1989
), Chaps. 5 and 7.
5.
J. H.
Rose
, “ 
‘Single-sided’ focusing of the time-dependent Schrödinger equation
,”
Phys. Rev. A
65
,
012707
(
2001
).
6.
J. H.
Rose
, “
Time reversal, focusing and exact inverse scattering
,” in
Imaging of Complex Media with Acoustic and Seismic Waves
, edited by
M.
Fink
,
W. A.
Kuperman
,
J. P.
Montagner
, and
A.
Tourin
(
Springer
,
Berlin
,
2002
), pp.
97
106
.
7.
J. H.
Rose
, “ 
‘Single-sided’ autofocusing of sound in layered materials
,”
Inverse Probl.
18
,
1923
1934
(
2002
).
8.
F.
Broggini
and
R.
Snieder
, “
Connection of scattering principles: A visual and mathematical tour
,”
Eur. J. Phys.
33
,
593
613
(
2012
).
9.
R. L.
Weaver
and
O. I.
Lobkis
, “
Ultrasonics without a source: Thermal fluctuation correlations at MHz frequencies
,”
Phys. Rev. Lett.
87
,
134301
(
2001
).
10.
M.
Campillo
and
A.
Paul
, “
Long-range correlations in the diffuse seismic coda
,”
Science
299
,
547
549
(
2003
).
11.
K. G.
Sabra
,
P.
Gerstoft
,
P.
Roux
,
W. A.
Kuperman
, and
M. C.
Fehler
, “
Surface wave tomography from microseisms in Southern California
,”
Geophys. Res. Lett.
32
,
L14311
, doi: (
2005
).
12.
D.
Draganov
,
K.
Wapenaar
,
W.
Mulder
,
J.
Singer
, and
A.
Verdel
, “
Retrieval of reflections from seismic background-noise measurements
,”
Geophys. Res. Lett.
34
,
L04305
, doi: (
2007
).
13.
G. T.
Schuster
, “
Theory of daylight/interferometric imaging: Tutorial
,” in EAGE, Extended Abstracts,
A032
(
2001
).
14.
G. T.
Schuster
,
Seismic Interferometry
(
Cambridge University Press
,
Cambridge
,
2009
), Chaps. 3–8.
15.
A.
Bakulin
and
R.
Calvert
, “
The virtual source method: Theory and case study
,”
Geophysics
71
,
SI139
SI150
(
2006
).
16.
A.
Curtis
,
P.
Gerstoft
,
H.
Sato
,
R.
Snieder
, and
K.
Wapenaar
, “
Seismic interferometry–Turning noise into signal
,”
The Leading Edge
25
,
1082
1092
(
2006
).
17.
F.
Broggini
,
R.
Snieder
, and
K.
Wapenaar
, “
Focusing the wavefield inside an unknown 1D medium: Beyond seismic interferometry
,”
Geophysics
77
,
A25
A28
(
2012
).
18.
R. G.
Newton
, “
Inverse scattering. IV. Three dimensions: Generalized Marchenko construction with bound states, and generalized Gel'fand-Levitan equations
,”
J. Math. Phys.
23
,
594
604
(
1982
).
19.
D. E.
Budreck
and
J. H.
Rose
, “
Three-dimensional inverse scattering in anisotropic elastic media
,”
Inverse Probl.
6
,
331
348
(
1990
).
20.
K.
Wapenaar
,
J.
Thorbecke
,
J.
van der Neut
,
F.
Broggini
,
E.
Slob
, and
R.
Snieder
, “
Marchenko imaging
,”
Geophysics
79
(
2014
) (to be published).
21.
F.
Broggini
,
R.
Snieder
, and
K.
Wapenaar
, “
Data-driven wave field focusing and imaging with multidimensional deconvolution: Numerical examples for reflection data with internal multiples
,”
Geophysics
79
(
2014
) (to be published).
22.
J. R.
Berryhill
, “
Wave-equation datuming before stack
,”
Geophysics
49
,
2064
2066
(
1984
).
23.
A. J.
Berkhout
and
C. P. A.
Wapenaar
, “
A unified approach to acoustical reflection imaging. Part II: The inverse problem
,”
J. Acoust. Soc. Am.
93
,
2017
2023
(
1993
).
24.
J. P.
Corones
,
M. E.
Davison
, and
R. J.
Krueger
, “
Direct and inverse scattering in the time domain via invariant imbedding equations
,”
J. Acoust. Soc. Am.
74
,
1535
1541
(
1983
).
25.
L.
Fishman
,
J. J.
McCoy
, and
S. C.
Wales
, “
Factorization and path integration of the Helmholtz equation: Numerical algorithms
,”
J. Acoust. Soc. Am.
81
,
1355
1376
(
1987
).
26.
C. P. A.
Wapenaar
and
A. J.
Berkhout
,
Elastic Wave Field Extrapolation
(
Elsevier
,
Amsterdam
,
1989
), Chaps. 3 and 5, App. B.
27.
L.
Fishman
, “
One-way propagation methods in direct and inverse scalar wave propagation modeling
,”
Radio Sci.
28
,
865
876
, doi: (
1993
).
28.
M. V.
de Hoop
, “
Directional decomposition of transient acoustic wave fields
,” Ph.D. thesis,
Delft University of Technology
(
1992
), Chap. 5.
29.
M. V.
de Hoop
, “
Generalization of the Bremmer coupling series
,”
J. Math. Phys.
37
,
3246
3282
(
1996
).
30.
A. J.
Haines
and
M. V.
de Hoop
, “
An invariant imbedding analysis of general wave scattering problems
,”
J. Math. Phys.
37
,
3854
3881
(
1996
).
31.
C. P. A.
Wapenaar
,
M. W. P.
Dillen
, and
J. T.
Fokkema
, “
Reciprocity theorems for electromagnetic or acoustic one-way wave fields in dissipative inhomogeneous media
,”
Radio Sci.
36
,
851
863
, doi: (
2001
).
32.
A. J.
Haines
, “
Multi-source, multi-receiver synthetic seismograms for laterally heterogeneous media using F-K domain propagators
,”
Geophys. J. Int.
95
,
237
260
(
1988
).
33.
B. L. N.
Kennett
,
K.
Koketsu
, and
A. J.
Haines
, “
Propagation invariants, reflection and transmission in anisotropic, laterally heterogeneous media
,”
Geophys. J. Int.
103
,
95
101
(
1990
).
34.
K.
Koketsu
,
B. L. N.
Kennett
, and
H.
Takenaka
, “
2-D reflectivity method and synthetic seismograms for irregularly layered structures—II. Invariant embedding approach
,”
Geophys. J. Int.
105
,
119
130
(
1991
).
35.
H.
Takenaka
,
B. L. N.
Kennett
, and
K.
Koketsu
, “
The integral operator representation of propagation invariants for elastic waves in irregularly layered media
,”
Wave Motion
17
,
299
317
(
1993
).
36.
C. P. A.
Wapenaar
, “
One-way representations of seismic data
,”
Geophys. J. Int.
127
,
178
188
(
1996
).
37.
A. T.
de Hoop
, “
Time-domain reciprocity theorems for acoustic wave fields in fluids with relaxation
,”
J. Acoust. Soc. Am.
84
,
1877
1882
(
1988
).
38.
J. T.
Fokkema
and
P. M.
van den Berg
,
Seismic Applications of Acoustic Reciprocity
(
Elsevier
,
Amsterdam
,
1993
), Chaps. 5 and 6.
39.
K.
Wapenaar
,
J.
Thorbecke
, and
D.
Draganov
, “
Relations between reflection and transmission responses of three-dimensional inhomogeneous media
,”
Geophys. J. Int.
156
,
179
194
(
2004
).
40.
K.
Wapenaar
,
F.
Broggini
,
E.
Slob
, and
R.
Snieder
, “
Three-dimensional single-sided Marchenko inverse scattering, data-driven focusing, Green's function retrieval, and their mutual relations
,”
Phys. Rev. Lett.
110
,
084301
(
2013
).
41.
E.
Slob
,
K.
Wapenaar
,
F.
Broggini
, and
R.
Snieder
, “
Seismic reflector imaging using internal multiples with Marchenko-type equations
Geophysics
79
(
2
),
S63
S76
(
2014
).
42.
C. P. A.
Wapenaar
,
G. L.
Peels
,
V.
Budejicky
, and
A. J.
Berkhout
, “
Inverse extrapolation of primary seismic waves
,”
Geophysics
54
,
853
863
(
1989
).
43.
C.
Prada
,
F.
Wu
, and
M.
Fink
, “
The iterative time reversal mirror: A solution to self-focusing in the pulse echo mode
,”
J. Acoust. Soc. Am.
90
,
1119
1129
(
1991
).
44.
G.
Montaldo
,
J. F.
Aubry
,
M.
Tanter
, and
M.
Fink
, “
Spatio-temporal coding in complex media for optimum beamforming: The iterative time-reversal approach
IEEE Trans. Ultrason. Ferroelectr., Freq. Control
52
,
220
230
(
2005
).
45.
M.
Fink
, “
Time-reversal acoustics
,”
J. Phys. Conf. Ser.
118
,
012001
(
2008
).
46.
D. J.
Verschuur
,
A. J.
Berkhout
, and
C. P. A.
Wapenaar
, “
Adaptive surface-related multiple elimination
,”
Geophysics
57
,
1166
1177
(
1992
).
47.
G. J. A.
van Groenestijn
and
D. J.
Verschuur
, “
Estimation of primaries and near-offset reconstruction by sparse inversion: Marine data applications
,”
Geophysics
74
,
R119
R128
(
2009
).
48.
J.
Virieux
and
S.
Operto
, “
An overview of full-waveform inversion in exploration geophysics
,”
Geophysics
74
,
WCC1
WCC26
(
2009
).
49.
Q.
Liu
and
Y. J.
Gu
, “
Seismic imaging: From classical to adjoint tomography
,”
Tectonophysics
566–567
,
31
66
(
2012
).
50.
F.
Broggini
,
R.
Snieder
, and
K.
Wapenaar
, “
Focusing inside an unknown medium using reflection data with internal multiples: numerical examples for a laterally-varying velocity model, spatially-extended virtual source, and inaccurate direct arrivals
,” in SEG, Expanded Abstracts, SPMUL 1.
8
(
2012
).
51.
A. T.
de Hoop
,
Handbook of Radiation and Scattering of Waves
(
Academic Press
,
London
,
1995
), Chap. 2.
You do not currently have access to this content.