This work develops a theoretical framework for acoustic cloak scattering analysis in a low speed non-stationary fluid that is simply described as a potential flow. The equivalent sound source induced by the moving fluid local to the cloak is analytically constructed and is then estimated using Born approximation. The far-field scattering can thereafter be obtained using the associated Green's function of the convected wave equation. The results demonstrate that the proposed analytical approach, which might be helpful in the design and evaluation of cloaking systems, effectively elucidates key characteristics of the relevant physics. In addition, it can be seen that, in a moving fluid, the so-called convected cloaking design achieves better cloaking performance than the classical cloaking design.

1.
C. L.
Scandrett
and
A. M.
Vieira
, “
Fluid-structure effects of cloaking a submerged spherical shell
,”
J. Acoust. Soc. Am.
134
,
1908
1919
(
2013
).
2.
S.
Zhang
,
C.
Xia
, and
N.
Fang
, “
Broadband acoustic cloak for ultrasound waves
,”
Phys. Rev. Lett.
106
,
024301
(
2011
).
3.
S. A.
Cummer
,
B.-I.
Popa
,
D.
Schurig
,
D. R.
Smith
,
J.
Pendry
,
M.
Rahm
, and
A.
Starr
, “
Scattering theory derivation of a 3D acoustic cloaking shell
,”
Phys. Rev. Lett.
100
,
024301
(
2008
).
4.
M.
Farhat
,
S.
Enoch
,
S.
Guenneau
, and
A. B.
Movchan
, “
Broadband cylindrical acoustic cloak for linear surface waves in a fluid
,”
Phys. Rev. Lett.
101
,
134501
(
2008
).
5.
B.-I.
Popa
,
L.
Zigoneanu
, and
S. A.
Cummer
, “
Experimental acoustic ground cloak in air
,”
Phys. Rev. Lett.
106
,
253901
(
2011
).
6.
H.
Chen
and
C. T.
Chan
, “
Acoustic cloaking in three dimensions using acoustic metamaterials
,”
Appl. Phys. Lett.
91
,
183518
(
2007
).
7.
S. A.
Cummer
and
D.
Schurig
, “
One path to acoustic cloaking
,”
New J. Phys.
9
,
1
8
(
2007
).
8.
A. N.
Norris
, “
Acoustic cloaking theory
,”
Proc. R. Soc. A
464
,
2411
2434
(
2008
).
9.
X.
Huang
,
L.
Bai
,
I.
Vinogradov
, and
E.
Peers
, “
Adaptive beamforming for array signal processing in aeroacoustic measurements
,”
J. Acoust. Soc. Am.
131
,
2152
2161
(
2012
).
10.
C.
Garcia-Meca
,
S.
Carloni
,
C.
Barcelo
,
G.
Jannes
,
J.
Sanchez-Dehesa
, and
A.
Martnez
, “
Analogue transformations in physics and their application to acoustics
,”
Sci. Rep.
3
,
1
5
(
2009
).
11.
P. Y.
Chen
and
A.
Alu
, “
Atomically thin surface cloak using graphene monolayers
,”
ACS Nano
5
,
5855
5863
(
2011
).
12.
C.
Bogey
,
C.
Bailly
, and
D.
Juvé
, “
Computation of flow noise using source terms in linearized Euler's equations
,”
AIAA J.
40
,
235
243
(
2002
).
13.
X.
Huang
,
X. X.
Chen
,
Z. K.
Ma
, and
X.
Zhang
, “
Efficient computation of spinning modal Radiation through an engine bypass duct
,”
AIAA J.
46
,
1413
1423
(
2008
).
14.
X.
Huang
and
X.
Zhang
, “
A Fourier pseudospectral method for some computational aeroacoustics problems
,”
Int. J. Aeroacoust.
5
,
279
294
(
2006
).
15.
E.
Peers
and
X.
Huang
, “
High-order schemes for predicting computational aeroacoustic propagation with adaptive mesh refinement
,”
Acta Mech. Sin.
29
,
1
11
(
2013
).
16.
M. J.
Lighthill
, “
On sound generated aerodynamically, 1. general theory
,”
Proc. R. Soc. London
A221
,
564
587
(
1952
).
17.
M. J.
Lighthill
, “
On sound generated aerodynamically, 2. turbulence as a source of sound
,”
Proc. R. Soc. London
A222
,
1
32
(
1954
).
18.
L.
Gizon
,
S. M.
Hanasoge
, and
A. C.
Birch
, “
Scattering of acoustic waves by a magnetic cylinder: Accuracy of the Born approximation
,”
Astrophys. J.
643
,
549
555
(
2006
).
19.
S. A.
Stotts
and
R. A.
Koch
, “
Rough surface scattering in a Born approximation from a two-way coupled-mode formalism
,”
J. Acoust. Soc. Am.
125
,
EL242
EL248
(
2009
).
20.
R. D.
Sandberg
,
L. E.
Jones
,
N. D.
Sandham
, and
P. F.
Joseph
, “
Direct numerical simulations of tonal noise generated by laminar flow past airfoils
,”
J. Sound Vib.
320
,
838
858
(
2009
).
21.
Y.
Chao
,
Z. F.
Zhou
, and
M.
Zhuang
, “
Acoustic intensity-based method for sound radiations in a uniform flow
,”
J. Acoust. Soc. Am.
126
,
2198
2205
(
2009
).
22.
S. K.
Richards
,
X.
Zhang
,
X. X.
Chen
, and
P. A.
Nelson
, “
Evaluation of non-reflecting boundary conditions for duct acoustic computation
,”
J. Sound Vib.
270
,
539
557
(
2004
).
23.
A. D.
Pierce
, “
Wave equation for sound in fluids with unsteady inhomogeneous flow
,”
J. Acoust. Soc. Am.
87
,
2292
2299
(
1990
).
24.
R.
Ewert
and
W.
Schröder
, “
Acoustic perturbation equations based on flow decomposition via source filtering
,”
J. Comp. Phys.
188
,
365
398
(
2003
).
25.
A.
Agarwal
,
P. J.
Morris
, and
R.
Mani
, “
Calculation of sound propagation in nonuniform flows: Suppression of instability waves
,”
AIAA J.
42
,
80
88
(
2004
).
26.
F. Q.
Hu
,
M. Y.
Hussaini
, and
J.
Manthey
, “
Low-dissipation and low-dispersion Runge-Kutta schemes for computational acoustics
,”
J. Comp. Phys.
124
,
177
191
(
1996
).
You do not currently have access to this content.