Changing the shape of the outer ear using small in-ear molds degrades sound localization performance consistent with the distortion of monaural spectral cues to location. It has been shown recently that adult listeners re-calibrate to these new spectral cues for locations both inside and outside the visual field. This raises the question as to the teacher signal for this remarkable functional plasticity. Furthermore, large individual differences in the extent and rate of accommodation suggests a number of factors may be driving this process. A training paradigm exploiting multi-modal and sensory-motor feedback during accommodation was examined to determine whether it might accelerate this process. So as to standardize the modification of the spectral cues, molds filling 40% of the volume of each outer ear were custom made for each subject. Daily training sessions for about an hour, involving repetitive auditory stimuli and exploratory behavior by the subject, significantly improved the extent of accommodation measured by both front-back confusions and polar angle localization errors, with some improvement in the rate of accommodation demonstrated by front-back confusion errors. This work has implications for both the process by which a coherent representation of auditory space is maintained and for accommodative training for hearing aid wearers.

1.
Alais
,
D.
, and
Burr
,
D.
(
2004
). “
The ventriloquist effect results from near-optimal bimodal integration
,”
Current Biol.
14
,
257
262
.
2.
Aytekin
,
M.
,
Moss
,
C. E.
, and
Simon
,
J. Z.
(
2008
). “
A sensorimotor approach to sound localization
,”
Neural Comput.
20
,
603
635
.
3.
Bergan
,
J. F.
,
Ro
,
P.
,
Ro
,
D.
, and
Knudsen
,
E. I.
(
2005
). “
Hunting increases adaptive auditory map plasticity in adult barn owls
,”
J. Neurosci.
25
,
9816
9820
.
4.
Bernard
,
M.
,
Pirim
,
P.
,
de Cheveigne
,
A.
, and
Gas
,
B.
(
2012
). “
Sensorimotor learning of sound localization from an auditory evoked behavior
,” in
2012 IEEE International Conference on Robotics and Automation
(
IEEE
,
New York)
, pp.
91
96
.
5.
Blauert
,
J.
(
1997
).
Spatial Hearing: The Psychophysics of Human Sound Localization
(
MIT Press
,
Cambridge, MA)
, pp.
36
200
.
6.
Brainard
,
M. S.
, and
Knudsen
,
E. I.
(
1998
). “
Sensitive periods for visual calibration of the auditory space map in the barn owl optic tectum
,”
J. Neurosci.
18
,
3929
3942
.
7.
Bulkin
,
D. A.
, and
Groh
,
J. M.
(
2006
). “
Seeing sounds: Visual and auditory interactions in the brain
,”
Curr. Opin. Neurobiol.
16
,
415
419
.
8.
Carlile
,
S.
, and
Blackman
,
T.
(
2013
). “
Relearning auditory spectral cues for locations inside and outside the visual field
,”
J. Assoc. Res. Otolaryngol.
15
,
249
263
.
9.
Carlile
,
S.
,
Jin
,
C.
, and
Raad
,
V. V.
(
2000
). “
Continuous virtual auditory space using HRTF interpolation: Acoustic and psychophysical errors
,” in
IEEE Pacific-Rim Conference on Multimedia: International Symposium on Multimedia Information Processing
, Sydney, Australia, pp.
220
223
.
10.
Carlile
,
S.
,
Leong
,
P.
, and
Hyams
,
S.
(
1997
). “
The nature and distribution of errors in the localization of sounds by humans
,”
Hear. Res.
114
,
179
196
.
11.
Carlile
,
S.
,
Martin
,
R.
, and
McAnnaly
,
K.
(
2005
). “
Spectral information in sound localization
,” in
Auditory Spectral Processing
, edited by
D. R. F.
Irvine
and
M.
Malmierrca
, International Review of Neurobiology, Vol.
70
(
Elsevier
), pp.
399
434
.
12.
Carlile
,
S.
, and
Pralong
,
D.
(
1994
). “
The location-dependent nature of perceptually salient features of the human head-related transfer function
,”
J. Acoust. Soc. Am.
95
,
3445
3459
.
13.
DiZio
,
P.
,
Held
,
R.
,
Lackner
,
J. R.
,
Shinn-Cunningham
,
B.
, and
Durlach
,
N.
(
2001
). “
Gravitoinertial force magnitude and direction influence head-centric auditory localization
,”
J. Neurophysiol.
85
,
2455
2460
.
14.
Goossens
,
H.
, and
Van Opstal
,
A. J.
(
1999
). “
Influence of head position on the spatial representation of acoustic targets
,”
J. Neurophysiol.
81
,
2720
2736
.
15.
Gougoux
,
F.
,
Zatorre
,
R. J.
,
Lassonde
,
M.
,
Voss
,
P.
, and
Lepore
,
F.
(
2005
). “
A functional neuroimaging study of sound localization: Visual cortex activity predicts performance in early-blind individuals
,”
PLoS Biol.
3
,
e27
.
16.
Hofman
,
P. M.
,
Van Riswick
J. G. A.
, and
Van Opstal
,
A. J.
(
1998
). “
Relearning sound localization with new ears
,”
Nat. Neurosci.
1
,
417
421
.
17.
Jin
,
C.
,
Corderoy
,
A.
,
Carlile
,
S.
, and
Schaik
,
A.
(
2004
). “
Contrasting monaural and interaural spectral cues for human sound localization
,”
J. Acoust. Soc. Am.
115
,
3124
3141
.
18.
Kacelnik
,
O.
,
Nodal
,
F. R.
,
Parsons
,
C. H.
, and
King
,
A. J.
(
2006
). “
Training-induced plasticity of auditory localization in adult mammals
,”
PLoS Biol.
4
,
e71
.
19.
Kanold
,
P. O.
, and
Young
,
E. D.
(
2001
). “
Proprioceptive information from the pinna provides somatosensory input to the cat dorsal cochlear nucleus
,”
J. Neurosi.
21
,
7848
7858
.
20.
King
,
A. J.
,
Hutchings
,
M. E.
,
Moore
,
D. R.
, and
Blakemore
,
C.
(
1988
). “
Developmental plasticity in the visual and auditory representations in the mammalian superior colliculus
,”
Nature (London)
332
,
73
75
.
21.
King
,
A. J.
, and
Parsons
,
C. H.
(
1999
). “
Improved auditory spatial acuity in visually deprived ferrets
,”
Eur. J. Neurosci.
11
,
3945
3956
.
22.
Knudsen
,
E. I.
,
Esterly
,
S. D.
, and
Olsen
J. F.
(
1994
). “
Adaptive plasticity of the auditory space map in the optic tectum of adult and baby barn owls in response to external ear modification
,”
J. Neurophysiol.
71
,
79
94
.
23.
Kumpik
,
D. P.
,
Kacelnik
,
O.
, and
King
,
A. J.
(
2010
). “
Adaptive reweighting of auditory localization cues in response to chronic unilateral earplugging in humans
,”
J. Neurosci.
30
,
4883
4894
.
24.
Leong
,
P. H. W.
, and
Carlile
,
S.
(
1998
). “
Methods for spherical data analysis and visualisation
,”
J. Neurosci. Meth.
80
,
191
200
.
25.
Lewald
,
J.
(
2007
). “
More accurate sound localization induced by short-term light deprivation
,”
Neuropsychologia
45
,
1215
1222
.
26.
Lewald
,
J.
, and
Ehrenstein
,
W. H.
(
1998
). “
Influence of head-to-trunk position on sound lateralization
,”
Exp. Brain Res.
121
,
230
238
.
27.
Lewald
,
J.
, and
Karnath
,
H. O.
(
2000
). “
Vestibular influence on human auditory space perception
,”
J. Neurophysiol.
84
,
1107
1111
.
28.
Majdak
,
P.
,
Walder
,
T.
, and
Laback
,
B.
(
2013
). “
Effect of long-term training on sound localization performance with spectrally warped and band-limited head related transfer functions
,”
J. Acoust. Soc. Am.
134
(
3
),
2148
2159
.
28.
Middlebrooks
,
J. C.
(
1992
). “
Narrow-band sound localization related to external ear acoustics
,”
J. Acoust. Soc. Am.
92
,
2607
2624
.
29.
Middlebrooks
,
J. C.
,
Makous
,
J. C.
, and
Green
,
D. M.
(
1989
). “
Directional sensitivity of sound-pressure levels in the human ear canal
,”
J. Acoust. Soc. Am.
86
,
89
108
.
30.
Otte
,
R. J.
,
Agterberg
,
M. J. H.
,
Van Wanrooij
,
M. M.
,
Snik
,
A. F. M.
, and
Van Opstal
,
A. J.
(
2013
). “
Age-related hearing loss and ear morphology affect vertical but not horizontal sound-localization performance
,”
J. Assoc. Res. Otolaryngol.
14
,
261
273
.
31.
Parseihian
,
G.
, and
Katz
,
B. F. G.
(
2012
). “
Rapid head-related transfer function adaptation using a virtual auditory environment
,”
J. Acoust. Soc. Am.
131
,
2948
2957
.
32.
Prieur
,
J. M.
,
Bourdin
,
C.
,
Vercher
,
J. L.
,
Sares
,
F.
,
Blouin
,
J.
, and
Gauthier
,
G.
(
2005
). “
Accuracy of spatial localization depending on head posture in a perturbed gravitoinertial force field
,”
Exp. Brain Res.
161
,
432
440
.
33.
Razavi
,
B.
,
O'Neill
,
W. E.
, and
Paige
,
G. D.
(
2007
). “
Auditory spatial perception dynamically realigns with changing eye position
,”
J. Neurosci.
27
,
10249
10258
.
34.
Recanzone
,
G. H.
(
1998
). “
Rapidly induced auditory plasticity: The ventriloquism aftereffect
,”
Proc. Natl. Acad. Sci. U.S.A.
95
,
869
875
.
35.
Recanzone
,
G. H.
(
2009
). “
Interactions of auditory and visual stimuli in space and time
,”
Hear. Res.
258
,
89
99
.
36.
Roder
,
B.
,
Teder-Salejarvi
,
W.
,
Sterr
,
A.
,
Rosler
,
F.
,
Hillyard
,
S. A.
, and
Neville
,
H. J.
(
1999
). “
Improved auditory spatial tuning in blind humans
,”
Nature (London)
400
,
162
166
.
37.
Shelton
,
B. R.
, and
Searle
,
C. L.
(
1980
). “
The influence of vision on the absolute identification of sound-source position
,”
Percept. Psychophys.
28
,
589
596
.
38.
Sparks
,
D. L.
(
2005
). “
An argument for using ethologically ‘natural' behaviors as estimates of unobservable sensory processes. Focus on ‘sound localization performance in the cat: The effect of restraining the head
,’ ”
J. Neurophysiol.
93
,
1136
1137
.
39.
Van Wanrooij
,
M. M.
, and
Van Opstal
,
A. J.
(
2005
). “
Relearning sound localization with a new ear
,”
J. Neurosci.
25
,
5413
5424
.
40.
Van Wanrooij
,
M. M.
, and
Van Opstal
,
A. J.
(
2007
). “
Sound localization under perturbed binaural hearing
,”
J. Neurophysiol.
97
,
715
726
.
41.
Vliegen
,
J.
,
Van Grootel
,
T. J.
, and
Van Opstal
,
A. J.
(
2004
). “
Dynamic sound localization during rapid eye-head gaze shifts
,”
J. Neurosci.
24
,
9291
9302
.
42.
Zahorik
,
P.
,
Bangayan
,
P.
,
Sundareswaran
,
V.
,
Wang
,
K.
, and
Tam
,
C.
(
2006
). “
Perceptual recalibration in human sound localization: Learning to remediate front-back reversals
,”
J. Acoust. Soc. Am.
120
,
343
359
.
43.
Zwiers
,
M. P.
,
Van Opstal
,
A. J.
, and
Paige
,
G. D.
(
2003
). “
Plasticity in human sound localization induced by compressed spatial vision
,”
Nat. Neurosci.
6
,
175
181
.
44.
Zwiers
,
M. P.
,
Versnel
,
H.
, and
Van Opstal
,
A. J.
(
2004
). “
Involvement of monkey inferior colliculus in spatial hearing
,”
J. Neurosci.
24
,
4145
4156
.
You do not currently have access to this content.