In this study a theoretical framework for calculating the acoustic response of optical fiber-based ultrasound sensors is presented. The acoustic response is evaluated for optical fibers with several layers of coating assuming a harmonic point source with arbitrary position and frequency. First, the fiber is acoustically modeled by a layered cylinder on which spherical waves are impinged. The scattering of the acoustic waves is calculated analytically and used to find the normal components of the strains on the fiber axis. Then, a strain-optic model is used to calculate the phase shift experienced by the guided mode in the fiber owing to the induced strains. The framework is showcased for a silica fiber with two layers of coating for frequencies in the megahertz regime, commonly used in medical imaging applications. The theoretical results are compared to experimental data obtained with a sensing element based on a pi-phase-shifted fiber Bragg grating and with photoacoustically generated ultrasonic signals.

1.
G.
Wild
and
S.
Hinckley
, “
Acousto-ultrasonic optical fiber sensors: Overview and state-of-the-art
,”
IEEE Sens. J.
8
(
7
),
1184
1193
(
2008
).
2.
L.
Flax
,
J. H.
Cole
,
R. P. D.
Paula
, and
J. A.
Bucaro
, “
Acoustically induced birefringence in optical fibers
,”
J. Opt. Soc. Am.
72
(
9
),
1159
1162
(
1982
).
3.
J. H.
Cole
,
R. L.
Johnson
, and
P. G.
Bhuta
, “
Fiber-optic detection of sound
,”
J. Acoust. Soc. Am.
62
(
5
),
1136
1138
(
1977
).
4.
J.
Jarzynski
,
R.
Hughes
,
T. R.
Hickman
, and
J. A.
Bucaro
, “
Frequency response of interferometric fiber-optic coil hydrophones
,”
J. Acoust. Soc. Am.
69
(
6
),
1799
1808
(
1977
).
5.
P.
Morris
,
A.
Hurrell
,
A.
Shaw
,
E.
Zhang
, and
P.
Beard
, “
A Fabry–Pérot fiber-optic ultrasonic hydrophone for the simultaneous measurement of temperature and acoustic pressure
,”
J. Acoust. Soc. Am.
125
(
6
),
3611
3622
(
2009
).
6.
J.
Haller
,
V.
Wilkens
,
K.-V.
Jenderka
, and
C.
Koch
, “
Characterization of a fiber-optic displacement sensor for measurements in high-intensity focused ultrasound fields
,”
J. Acoust. Soc. Am.
129
(
6
),
3676
3681
(
2011
).
7.
G. A.
Cranch
,
G. A.
Miller
, and
C. K.
Kirkendall
, “
Fiber-optic, cantilever-type acoustic motion velocity hydrophone
,”
J. Acoust. Soc. Am.
132
(
1
),
103
114
(
2012
).
8.
B.
Culshaw
,
G.
Pierce
, and
P.
Jun
, “
Non-contact measurement of the mechanical properties of materials using an all-optical technique
,”
IEEE Sens. J.
3
(
1
),
62
70
(
2003
).
9.
B. A.
William
and
R. J.
Dewhurst
, “
A fiber-optic detection system for laser-ultrasound lamb-wave examination of defects in thin materials
,”
Nondestr. Test. Eval.
12
(
6
),
343
353
(
1996
).
10.
H.
Grün
,
T.
Berer
,
K.
Felbermayer
,
R.
Nuster
,
G.
Paltauf
, and
P.
Burgholzer
, “
Polymer fiber detectors for photoacoustic imaging
,”
Proc. SPIE
7564
,
75640M
(
2010
).
11.
H.
Grün
,
T.
Berer
,
K.
Felbermayer
,
R.
Nuster
,
G.
Paltauf
, and
P.
Burgholzer
, “
Single mode polymer fiber line detector for photoacoustic tomography
,”
Proc. SPIE
8223
,
822337
(
2012
).
12.
H.
Grün
,
R.
Nuster
,
G.
Paltauf
,
T.
Berer
, and
P.
Burgholzer
, “
Three-dimensional photoacoustic imaging using fiber-based line detectors
,”
J. Biomed. Opt.
15
(
2
),
021306
(
2010
).
13.
H.
Grün
,
T.
Berer
,
A.
Hochreiner
,
R.
Nuster
,
G.
Paltauf
, and
P.
Burgholzer
, “
Photoacoustic imaging with integrating line detectors
,”
Proc. SPIE
7265
,
72650
K (
2009
).
14.
A.
Rosenthal
,
D.
Razansky
, and
V.
Ntziachristos
, “
High-sensitivity compact ultrasonic detector based on a pi-phase-shifted fiber Bragg grating
,”
Opt. Lett.
36
(
10
),
1833
1835
(
2011
).
15.
A.
Rosenthal
,
M. Á.
Araque Caballero
,
S.
Kellnberger
,
D.
Razansky
, and
V.
Ntziachristos
, “
Spatial characterization of the response of a silica optical fiber to wideband ultrasound
,”
Opt. Lett.
37
(
15
),
3174
3176
(
2012
).
16.
T.
Berer
,
I. A.
Veres
,
H.
Grün
,
J.
Bauer-Marschallinger
,
K.
Felbermayer
, and
P.
Burgholzer
, “
Characterization of broadband fiber optic line detectors for photoacoustic tomography
,”
J. Biophotonics
5
(
7
),
518
528
(
2012
).
17.
A.
Rosenthal
,
V.
Ntziachristos
, and
D.
Razansky
, “
Optoacoustic methods for frequency calibration of ultrasonic sensors
,”
IEEE Trans. Ultrason., Ferroelectr. Freq. Control
58
(
2
),
316
326
(
2011
).
18.
M.
Caballero
,
A.
Rosenthal
,
A.
Buehler
,
D.
Razansky
, and
V.
Ntziachristos
, “
Optoacoustic determination of spatio-temporal responses of ultrasound sensors
,”
IEEE Trans. Ultrason., Ferroelectr. Freq. Control
60
(
6
),
1234
1244
(
2013
).
19.
J.
Dorighi
,
S.
Krishnaswamy
, and
J. D.
Achenbach
, “
Response of an embedded fiber optic ultrasound sensor
,”
J. Acoust. Soc. Am.
101
(
1
),
257
263
(
1997
).
20.
J.
Im
and
Y.
Roh
, “
A finite element analysis of an interferometric optical fiber hydrophone
,”
J. Acoust. Soc. Am.
103
(
5
),
2425
2431
(
1998
).
21.
I.
Veres
,
G.
Flockhart
,
G.
Pierce
,
B.
Culshaw
,
T.
Berer
,
H.
Grün
, and
P.
Burgholzer
, “
Numerical and analytical modeling of optical fibers for ultrasound detection
,” in
IEEE International Ultrasonics Symposium (IUS)
(
2011
), pp.
520
523
.
22.
W.
Huang
,
Y. J.
Wang
, and
S. I.
Rokhlin
, “
Oblique scattering of an elastic wave from a multilayered cylinder in a solid transfer matrix approach
,”
J. Acoust. Soc. Am.
99
(
5
),
2742
2754
(
1996
).
23.
G. J.
Diebold
,
T.
Sun
, and
M. I.
Khan
, “
Photoacoustic monopole radiation in one, two, and three dimensions
,”
Phys. Rev. Lett.
67
,
3384
3387
(
1991
).
24.
A.
Rosenthal
,
V.
Ntziachristos
, and
D.
Razansky
, “
Model-based optoacoustic inversion with arbitrary-shape detectors
,”
Med. Phys.
38
(
7
),
4285
4295
(
2011
).
25.
P. E.
Doak
, “
The reflexion of a spherical acoustic pulse by an absorbent infinite plane and related problems
,”
Proc. R. Soc. London, Ser. A
215
(
1121
),
233
254
(
1952
).
26.
N. C.
Banik
and
I.
Lerche
, “
Reflection and refraction of a spherical acoustic wave from a thin layer
,”
J. Math. Phys.
27
(
6
),
1694
1700
(
1986
).
27.
J. R.
Furlong
,
C. F.
Westbury
, and
E. A.
Phillips
, “
A method for predicting the reflection and refraction of spherical waves across a planar interface
,”
J. Appl. Phys.
76
(
1
),
25
32
(
1994
).
28.
H.
Huang
, “
Scattering of spherical pressure pulses by a hard cylinder
,”
J. Acoust. Soc. Am.
58
(
2
),
310
317
(
1975
).
29.
J. C.
Piquette
, “
Spherical wave scattering by an elastic solid cylinder of infinite length
,”
J. Acoust. Soc. Am.
79
(
5
),
1248
1259
(
1986
).
30.
T.
Li
and
M.
Ueda
, “
Sound scattering of a spherical wave incident on a cylinder
,”
J. Acoust. Soc. Am.
87
(
5
),
1871
1879
(
1990
).
31.
K.
Graff
,
Wave Motion in Elastic Solids
(
Dover Publications Inc.
,
Mineola, NY
,
1991
), pp.
394
406
.
32.
J. S.
Sirkis
, “
Unified approach to phase-strain-temperature models for smart structure interferometric optical fiber sensors: Part 1, Development
,”
Opt. Eng.
32
(
4
),
752
761
(
1993
).
33.
J. L.
Rose
,
Ultrasonic Waves in Solid Media
(
Cambridge University Press
,
Cambridge, UK
,
1999
), pp.
24
26
.
34.
B.
Cox
and
P.
Beard
, “
The frequency-dependent directivity of a planar Fabry-Perot polymer film ultrasound sensor
,”
IEEE Trans. Ultrason., Ferroelectr. Freq. Control
54
(
2
),
394
404
(
2007
).
35.
I. A.
Veres
,
T.
Berer
,
C.
Gruensteidl
, and
P.
Burgholzer
, “
On the crossing points of the Lamb modes and the maxima and minima of displacements observed at the surface
,”
Ultrasonics
54
(
3
),
759
762
(
2014
).
You do not currently have access to this content.