Matched field processing is a model-based framework for localizing targets in complex propagation environments. In underwater acoustics, it has been extensively studied for improving localization performance in multimodal and multipath media. For guided wave structural health monitoring problems, matched field processing has not been widely applied but is an attractive option for damage localization due to equally complex propagation environments. Although effective, matched field processing is often challenging to implement because it requires accurate models of the propagation environment, and the optimization methods used to generate these models are often unreliable and computationally expensive. To address these obstacles, this paper introduces data-driven matched field processing, a framework to build models of multimodal propagation environments directly from measured data, and then use these models for localization. This paper presents the data-driven framework, analyzes its behavior under unmodeled multipath interference, and demonstrates its localization performance by distinguishing two nearby scatterers from experimental measurements of an aluminum plate. Compared with delay-based models that are commonly used in structural health monitoring, the data-driven matched field processing framework is shown to successfully localize two nearby scatterers with significantly smaller localization errors and finer resolutions.

1.
A. B.
Baggeroer
, “
Matched field processing: Source localization in correlated noise as an optimum parameter estimation problem
,”
J. Acoust. Soc. Am.
83
,
571
587
(
1988
).
2.
A. B.
Baggeroer
,
W. A.
Kuperman
, and
P. N.
Mikhalevsky
, “
An overview of matched field methods in ocean acoustics
,”
IEEE J. Ocean. Eng.
18
,
401
424
(
1993
).
3.
J. L.
Krolik
, “
Matched-field minimum variance beamforming in a random ocean channel
,”
J. Acoust. Soc. Am.
92
,
1408
1419
(
1992
).
4.
Z.-H.
Michalopoulou
, “
Robust multi-tonal matched-field inversion: A coherent approach
,”
J. Acoust. Soc. Am.
104
,
163
170
(
1998
).
5.
C.
Debever
and
W. A.
Kuperman
, “
Robust matched-field processing using a coherent broadband white noise constraint processor
,”
J. Acoust. Soc. Am.
122
,
1979
1986
(
2007
).
6.
W.
Mantzel
,
J.
Romberg
, and
K.
Sabra
, “
Compressive matched-field processing
,”
J. Acoust. Soc. Am.
132
,
90
102
(
2012
).
7.
S. E.
Dosso
and
M. J.
Wilmut
, “
Maximum-likelihood and other processors for incoherent and coherent matched-field localization
,”
J. Acoust. Soc. Am.
132
,
2273
2285
(
2012
).
8.
D. B.
Harris
and
T.
Kvaerna
, “
Super-resolution with seismic arrays using empirical matched field processing
,”
Geophys. J. Int.
182
,
1455
1477
(
2010
).
9.
M.
Papazoglou
and
J.
Krolik
, “
Matched-field estimation of aircraft altitude from multiple over-the-horizon radar revisits
,”
IEEE Trans. Signal Process.
47
,
966
976
(
1999
).
10.
P.
Gerstoft
,
D. F.
Gingras
,
L. T.
Rogers
, and
W. S.
Hodgkiss
, “
Estimation of radio refractivity structure using matched-field array processing
,”
IEEE Trans. Antennas Propag.
48
,
345
356
(
2000
).
11.
G.
Turek
and
W. A.
Kuperman
, “
Applications of matched-field processing to structural vibration problems
,”
J. Acoust. Soc. Am.
101
,
1430
1440
(
1997
).
12.
R. K.
Ing
and
M.
Fink
, “
Ultrasonic imaging using spatio-temporal matched field (STMF) processing-applications to liquid and solid waveguides
,”
IEEE Trans. Ultrason., Ferroelectr., Freq. Control
48
,
374
386
(
2001
).
13.
W. A.
Kuperman
,
W. S.
Hodgkiss
,
H. C.
Song
,
T.
Akal
,
C.
Ferla
, and
D. R.
Jackson
, “
Phase conjugation in the ocean: Experimental demonstration of an acoustic time-reversal mirror
,”
J. Acoust. Soc. Am.
103
,
25
40
(
1998
).
14.
J. M. F.
Moura
and
Y.
Jin
, “
Time reversal imaging by adaptive interference canceling
,”
IEEE Trans. Signal Process.
56
,
233
247
(
2008
).
15.
J. E.
Michaels
, “
Detection, localization and characterization of damage in plates with an in situ array of spatially distributed ultrasonic sensors
,”
Smart Mater. Struct.
17
,
035035
(
2008
).
16.
T.
Clarke
and
P.
Cawley
, “
Enhancing the defect localization capability of a guided wave SHM system applied to a complex structure
,”
Struct. Health Monit.
10
,
247
259
(
2011
).
17.
A.
Tolstoy
, “
Applications of matched-field processing to inverse problems in underwater acoustics
,”
Inverse Prob.
16
,
1655
1666
(
2000
).
18.
P.
Gerstoft
, “
Inversion of seismoacoustic data using genetic algorithms and a posteriori probability distributions
,”
J. Acoust. Soc. Am.
95
,
770
782
(
1994
).
19.
S. E.
Dosso
,
P. L.
Nielsen
, and
M. J.
Wilmut
, “
Data error covariance in matched-field geoacoustic inversion
,”
J. Acoust. Soc. Am.
119
,
208
219
(
2006
).
20.
N. M.
Shapiro
and
M. H.
Ritzwoller
, “
Monte-Carlo inversion for a global shear-velocity model of the crust and upper mantle
,”
Geophys. J. Int.
151
,
88
105
(
2002
).
21.
J. B.
Harley
and
J. M. F.
Moura
, “
Sparse recovery of the multimodal and dispersive characteristics of Lamb waves
,”
J. Acoust. Soc. Am.
133
,
2732
2745
(
2013
).
22.
D. L.
Donoho
,
M.
Elad
, and
V. N.
Temlyakov
, “
Stable recovery of sparse overcomplete representations in the presence of noise
,”
IEEE Trans. Inf. Theory
52
,
6
18
(
2006
).
23.
S. S.
Chen
,
D. L.
Donoho
, and
M. A.
Saunders
, “
Atomic decomposition by basis pursuit
,”
SIAM J. Sci. Comput.
43
,
129
159
(
1998
).
24.
M.
Lowe
, “
Matrix techniques for modeling ultrasonic waves in multilayered media
,”
IEEE Trans. Ultrason., Ferroelectr., Freq. Control
42
,
525
542
(
1995
).
25.
K. F.
Graff
,
Wave Motion in Elastic Solids
, 1st ed. (
Dover Publications
,
New York
,
1991
), Chap. 8.2.3, pp.
458
480
.
26.
J. D.
Achenbach
,
Wave Propagation in Elastic Solids
(
Elsevier Science Publishers B.V.
,
Amsterdam
,
1975
), Chap. 5.11,
425
pp.
27.
F. B.
Jensen
,
W. A.
Kuperman
,
M. B.
Porter
, and
H.
Schmidt
,
Computational Ocean Acoustics
(
Springer
,
New York, NY
,
2011
), Chap. 2.4.5, pp.
118
133
.
28.
J. B.
Harley
and
J. M. F.
Moura
, “
Broadband localization in a dispersive medium through sparse wavenumber analysis
,” in
IEEE International Conference on Acoustics, Speech, and Signal Processing
, Vancouver, BC,
2013
, pp.
4071
4075
.
29.

Note that, due to a typo, Eq. (17) in Ref. 21 incorrectly defines the normalization constant μ(d).

30.
R. M.
Levine
and
J. E.
Michaels
, “
Model-based imaging of damage with Lamb waves via sparse reconstruction
,”
J. Acoust. Soc. Am.
133
,
1525
1534
(
2013
).
31.
S.
Aeron
,
S.
Bose
,
H.-P.
Valero
, and
V.
Saligrama
, “
Broadband dispersion extraction using simultaneous sparse penalization
,”
IEEE Trans. Signal Process.
59
,
4821
4837
(
2011
).
32.
G.
Chardon
,
A.
Leblanc
, and
L.
Daudet
, “
Plate impulse response spatial interpolation with sub-Nyquist sampling
,”
J. Sound Vib.
330
,
5678
5689
(
2011
).
33.
I.
Zorych
and
Z.-H.
Michalopoulou
, “
Particle filtering for dispersion curve tracking in ocean acoustics
,”
J. Acoust. Soc. Am.
124
,
EL45
EL50
(
2008
).
34.
J.
Hall
and
J. E.
Michaels
, “
Minimum variance ultrasonic imaging applied to an in situ sparse guided wave array
,”
IEEE Trans. Ultrason., Ferroelectr., Freq. Control
57
,
2311
2323
(
2010
).
35.
S.
Kunis
and
H.
Rauhut
, “
Random sampling of sparse trigonometric polynomials. II. Orthogonal matching pursuit versus basis pursuit
,”
Found. Comput. Math.
8
,
737
763
(
2008
).
36.
R.
Baraniuk
,
M.
Davenport
,
R.
DeVore
, and
M.
Wakin
, “
A simple proof of the restricted isometry property for random matrices
,”
Constr. Approx.
28
,
253
263
(
2008
).
37.
H.
Rauhut
, “
Stability results for random sampling of sparse trigonometric polynomials
,”
IEEE Trans. Inf. Theory
54
,
5661
5670
(
2008
).
38.
M. E.
Pfetsch
and
A. M.
Tillmann
, “
The computational complexity of the restricted isometry property, the null space property, and related concepts in compressed sensing
,”
IEEE Trans. Inf. Theory
60
(
2
),
1248
1259
(
2013
).
39.
J. D.
Blanchard
,
C.
Cartis
, and
J.
Tanner
, “
Decay properties of restricted isometry constants
,”
IEEE Signal Process. Lett.
16
,
572
575
(
2009
).
40.
J. D.
Blanchard
,
C.
Cartis
, and
J.
Tanner
, “
Compressed sensing: How sharp is the restricted isometry property?
SIAM Rev.
53
,
105
125
(
2011
).
41.
R.
Vershynin
,
Introduction to the Non-Asymptotic Analysis of Random Matrices
, edited by
Y.
Eldar
and
G.
Kutyniok
(
Cambridge University Press
,
Cambridge
,
2012
), Chap. 5, pp.
210
268
.
42.
D.
Gabor
, “
Theory of communication. Part 1: The analysis of information
,”
J. Inst. Electr. Eng., Part 3
93
,
429
441
(
1946
).
43.
H. L.
Van Trees
,
Radar-Sonar Signal Processing and Gaussian Signals in Noise, Detection, Estimation, and Modulation Theory, Part III
(
John Wiley and Sons
,
New York
,
2001
), Chap. 10, pp.
292
294
.
44.
H. C.
Song
,
J.
de Rosny
, and
W. A.
Kuperman
, “
Improvement in matched field processing using the CLEAN algorithm
,”
J. Acoust. Soc. Am.
113
,
1379
1386
(
2003
).
You do not currently have access to this content.