This article focuses on computations of low frequency sound propagation from an off-shore wind farm. Two different methods for sound propagation calculations are combined with meteorological data for every 3 hours in the year 2010 to examine the varying noise levels at a reception point at 13 km distance. It is shown that sound propagation conditions play a vital role in the noise impact from the off-shore wind farm and ordinary assessment methods can become inaccurate at longer propagation distances over water. Therefore, this paper suggests that methodologies to calculate noise immission with realistic sound speed profiles need to be combined with meteorological data over extended time periods to evaluate the impact of low frequency noise from modern off-shore wind farms.

1.
New UK offshore wind farm licenses are announced
,” (
2010
), http://news.bbc.co.uk/2/hi/business/8448203.stm (Last viewed 5/6/13).
2.
E.
Pedersen
and
K. P.
Waye
, “
Perception and annoyance due to wind turbine noise-a dose-response relationship
,”
J. Acoust. Soc. Am.
116
,
3460
3470
(
2004
).
3.
E.
Pedersen
and
K.
Persson-Waye
, “
Wind turbine noise, annoyance and self-reported health and well-being in different living environments
,”
Occup. Environ. Med.
64
(
7
),
480
486
(
2007
).
4.
E.
Pedersen
,
F.
van den Berg
,
R.
Bakker
, and
J.
Bouma
, “
Response to noise from modern wind farms in the Netherlands
,”
J. Acoust. Soc. Am.
126
,
634
643
(
2009
).
5.
S. A.
Janssen
,
H.
Vos
,
A. R.
Eisses
, and
E.
Pedersen
, “
A comparison between exposure-response relationships for wind turbine annoyance and annoyance due to other noise sources
,”
J. Acoust. Soc. Am
130
,
3746
3753
(
2011
).
6.
G.
van den Berg
, “
The beat is getting stronger: The effect of atmospheric stability on low frequency modulated sound of wind turbines
,”
J. Low Freq. Noise. V A
24
,
1
24
(
2005
).
7.
H. A.
Madsen
, “
Low frequency noise from wind turbines mechanisms of generation and its modeling
,”
J. Low Freq. Noise. V A
29
,
239
251
(
2010
).
8.
H. G.
Leventhall
, “
Low frequency noise and annoyance
,”
Noise Health
6
,
59
72
(
2004
), http://www.noiseandhealth.org/text.asp?2004/6/23/59/31663.
9.
H.
Møller
and
C. S.
Pedersen
, “
Low-frequency noise from large wind turbines
,”
J. Acoust. Soc. Am.
129
,
3727
3744
(
2011
).
10.
R. D.
O'Neal
,
J. R. D.
Hellweg
, and
R. M.
Lampeter
, “
Low frequency noise and infrasound from wind turbines
,”
Noise Control Eng. J.
59
,
135
157
(
2011
).
11.
K.
Bolin
,
G.
Bluhm
,
G.
Eriksson
, and
M. E.
Nilsson
, “
Infrasound and low frequency noise from wind turbines: Exposure and health effects
,”
Environ. Res. Lett.
6
,
035103
(
2011
).
12.
J.
Jakobsen
, “
Infrasound emission from wind turbines
,”
J. Low Freq. Noise. V A
24
,
145
155
(
2005
).
13.
K.
Bolin
,
M.
Boué
, and
I.
Karasalo
, “
Long range sound propagation over a sea surface
,”
J. Acoust. Soc. Am.
126
,
2191
2197
(
2009
).
14.
K.
Konishi
,
Y.
Tanioku
, and
Z.
Maekawa
, “
Long time measurement of long range sound propagation over an ocean surface
,”
Appl. Acoust.
61
,
149
172
(
2000
).
15.
K.
Konishi
and
Z.
Maekawa
, “
Interpretation of long term data measured continuously on long range sound propagation over sea surfaces
,”
Appl. Acoust.
62
,
1183
1210
(
2001
).
16.
L.
Johansson
, “
Sound propagation around off-shore wind turbines: Long-range parabolic equation calculations for Baltic sea conditions
,”
Technical Report, Licentiate thesis
(
Building Sciences, KTH
,
Stockholm, Sweden
,
2003
).
17.
Bekendtgørelse om stj fra vindmøller
” (“Report on noise from wind turbines”), Technical Report No. 1284, Miljøstyrelsen (
Danish Environmental Protection Agency
, Copenhagen,
2011
).
18.
D. 45680, “
Messung und bewertung tieffrequenter geruschimmissionen in der nach-barschaft
” (“Measurement and assessment of low-frequency noise emissions in the neighbourhood”), Technical Report (Deutches Institut fr Normung, Germany,
1997
).
19.
Buller inomhus
” (“Low-frequency noise in dwellings”), Technical Report SOSFS 2005:6 (
Socialstyrelsen
, Sweden,
2005
).
20.
N. S.
Geluidhinder
, “
Nsg-richtlijn laagfrequent geluid
” (“Guidelines for low-frequency noise”), Technical Report (Nederlandse Stichting Geluidhinder, Amsterdam,
1999
), pp.
1
25
.
21.
ISO 226:2003
:
Acoustics-Normal Equal-Loudness-Level Contours
(
International Organization for Standardization
,
Geneva, Switzerland
,
2003
).
22.
A.
Moorehouse
,
D.
Weddington
, and
M.
Adams
, “
Proposed criterium for the assessment of low frequency noise disturbance
,” Technical Report (Acoustics Research Centre, University of Salford, Salford, UK,
2005
).
23.
E. M.
Salomons
,
Computational Atmospheric Acoustics
(
Kluwer Academic Publishers
,
Dordrecht, Netherlands
,
2002
),
335
pp.
24.
F.
Jensen
,
W.
Kuperman
,
M.
Porter
, and
H.
Schmidt
,
Computational Ocean Acoustics
, 2nd ed. (
Springer
,
New York
,
2011
),
794
pp.
25.
ISO 9613-2
:
Attenuation of Sound During Propagation Outdoors, Part 2: General Method of Calculation
(
International Organization for Standardization
,
Geneva, Switzerland
,
1996
).
26.
Mätning och beräkning av ljud från vindkraft, vägledning
” (“Measurement and calculation of sounds from wind power, guidance”), http://www.naturvardsverket.se/upload/stod-i-miljoarbetet/vagledning/buller/buller-vindkraft/matning-berakning-vindkraftljud-20130221.pdf (Last viewed 5/6/13).
27.
K. E.
Gilbert
and
X.
Di
, “
A fast Green's function method for one-way sound propagation in the atmosphere
,”
J. Acoust. Soc. Am.
94
,
2343
2352
(
1993
).
28.
X.
Di
and
K. E.
Gilbert
, “
Application of a fast Green's function method to long range sound propagation in the atmosphere
,” in
Proceedings of the Fifth International Symposium on Long Range Sound Propagation
(Milton Keynes, UK,
1992
), pp.
128
146
.
29.
E. M.
Salomons
, “
Improved Green's function parabolic equation method for atmospheric sound propagation
,”
J. Acoust. Soc. Am.
104
,
100
111
(
1998
).
30.
I.
Karasalo
, “
Exact finite elements for wave-propagation in range-independent fluid-solid media
,”
J. Sound Vib.
172
,
671
688
(
1994
).
31.
ISO 9613-1
:
Attenuation of Sound During Propagation Outdoors, Part 1: Atmospheric Absorption
(
International Organization for Standardization
,
Geneva, Switzerland
,
1993
).
32.
I.
Karasalo
and
J.
deWinter
, “
Airy function elements for inhomogeneous fluid layers
,” in
Proc. 8th European Conference on Underwater Acoustics
,
Carvoeiro, Portugal
(
2006
), pp.
33
38
.
33.
S.
Ivansson
and
I.
Karasalo
, “
A high-order adaptive integration method for wave propagation in range-independent fluid-solid media
,”
J. Acoust. Soc. Am.
92
,
1569
1577
(
1992
).
34.
R.
Bulirsch
and
J.
Stoer
, “
Fehlerabschätzungen und extrapolation mit rationalen funktionen bei verfahren vom richardson-typus” (“Error estimates and extrapolation with rational functions in procedures from Richardson-type”)
,
Numer. Math.
6
,
413
427
(
1964
).
35.
K.
Eerola
and
Y.
Yang
, “
Some results of the validation tests of Hirlam 7.1
,” Hirlam Newsletter No. 52 Paper 18 (
2007
), http://www.hirlam.org/index.php/component/docman/cat_view/77-hirlam-official-publications/78-hirlam-newsletters/90-hirlam-newsletter-no-52?start=10 (Last viewed 1/24/14).
36.
P.
Boulanger
and
K.
Attenborough
, “
Effective impedance spectra for predicting rough sea effects on atmospheric impulsive sounds
,”
J. Acoust. Soc. Am.
117
,
751
762
(
2005
).
37.
M. E.
Delany
and
E. N.
Bazley
, “
Acoustical properties of fibrous absorbant materials
,”
Appl. Acoust.
3
,
105
116
(
1970
).
38.
P.
Boulanger
,
K.
Attenborough
,
S.
Taherzadeh
,
T.
Waters-Fuller
, and
K. M.
Li
, “
Ground effect over hard rough surfaces
,”
J. Acoust. Soc. Am.
104
,
1474
1482
(
1998
).
39.
E. M.
Salomons
, “
Computational study of sound propagation over undulating water
,” in
Proceedings of the 19th International Congress on Acoustics
, NOI-05-008, Madrid, Spain (
2007
).
40.
D. K.
Wilson
, “
A turbulence spectral model for sound propagation in the atmosphere that incorporates shear and buoyancy forcings
,”
J. Acoust. Soc. Am.
108
,
2021
2038
(
2000
).
41.
D. K.
Wilson
and
V. E.
Ostashev
, “
Statistical moments of the sound field propagating in a random, refractive medium near an impedance boundary
,”
J. Acoust. Soc. Am.
109
,
1909
1922
(
2001
).
42.
D. K.
Wilson
,
V. E.
Ostashev
, and
M. S.
Lewis
, “
Moment-screen method for wave propagation in a refractive medium with random scattering
,”
Wave Random Complex
19
,
369
391
(
2009
).
43.
D.
Hoffmeyer
and
J.
Jakobsen
, “
Sound insulation of dwellings at low frequencies
,”
J. Low Freq. Noise V A
29
,
15
23
(
2010
).
44.
H.
Møller
,
S.
Pedersen
,
K. P.
Waye
, and
C. S.
Pedersen
, “
Comments to the article ‘Sound insulation of dwellings at low frequencies,’
 ”
J. Low Freq. Noise V A
30
,
229
231
(
2011
).
45.
K.
Bolin
,
A.
Kedhammar
, and
M. E.
Nilsson
, “
The influence of background sounds on loudness and annoyance of wind turbine noise
,”
Acta Acust. Acust.
98
,
741
748
(
2012
).
46.
K.
Bolin
and
M.
Åbom
, “
Air-borne sound generated by sea waves
,”
J. Acoust. Soc. Am.
127
,
2771
2779
(
2010
).
47.
B. C. J.
Moore
,
B. R.
Glasberg
, and
T.
Baer
, “
A model for the prediction of thresholds, loudness, and partial loudness
,”
J. Audio Eng. Soc.
45
,
224
240
(
1997
), http://www.aes.org/e-lib/browse.cfm?elib=10272.
48.
B. R.
Glasberg
and
B. C. J.
Moore
, “
A model of loudness applicable to time-varying sounds
,”
J. Audio Eng. Soc.
50
,
331
342
(
2002
), http://www.aes.org/e-lib/browse.cfm?elib=11081.
49.
K.
Kaliski
and
E.
Duncan
, “
Calculating annualized sound levels for a wind farm
,” in
Proceedings of Meetings on Acoustics
,
Baltimore, MD
(
2010
), Vol. 9.
50.
R.
Makarewicz
, “
Is a wind turbine a point source? (L)
,”
J. Acoust. Soc. Am.
129
,
579
581
(
2011
).
51.
S.
Oerlemans
,
P.
Sijtsma
, and
B. M.
Lopez
, “
Location and quantification of noise sources on a wind turbine
,”
J. Sound Vibration
299
,
869
883
(
2007
).
52.
S.
Lee
,
S.
Lee
, and
S.
Lee
, “
Numerical modeling of wind turbine aerodynamic noise in the time domain
,”
J. Acoust. Soc. Am.
133
,
EL94
EL100
(
2013
).
You do not currently have access to this content.