The aeroacoustics of a recorder are explored using a direct numerical simulation based on the Navier–Stokes equations in three dimensions. The qualitative behavior is studied using spatial maps of the air pressure and velocity to give a detailed picture of jet dynamics and vortex shedding near the labium. In certain cases, subtle but perhaps important differences in the motion of the air jet near the edge of the channel as compared to the channel center are observed. These differences may be important when analyzing experimental visualizations of jet motion. The quantitative behavior is studied through analysis of the spectrum of the sound pressure outside the instrument. The effect of chamfers and of changes in the position of the labium relative to the channel on the tonal properties are explored and found to be especially important in the attack portion of the tone. Changes in the spectrum as a result of variations in the blowing speed are also investigated as well as the behavior of the spectrum when the dominant spectral component switches from the fundamental to the second harmonic mode of the resonator tube.

1.
N.
Giordano
, “
Direct numerical simulation of a recorder
,”
J. Acoust. Soc. Am.
133
,
1113
1118
(
2013
).
2.
P. A.
Skordos
, “
Modeling of flue pipes: Subsonic flow, lattice Boltzmann and parallel distributed distributed computers
,” Ph.D. thesis,
MIT, Cambridge, MA
,
1995
.
3.
P. A.
Skordos
and
G. J.
Sussman
, “
Comparison between subsonic flow simulation and physical measurements of flue pipes
,” in
Proceedings of the International Symposium on Musical Acoustics
,
Dourdan
,
France
(
1995
), pp.
1
6
.
4.
H.
Kühnelt
, “
Simulating the mechanism of sound generation in flutes using the lattice Boltzmann method
,” in
Proceedings of the Stockholm Music Acoustics Conference (SMAC 03)
,
SMAC1
SMAC4
(
2003
).
5.
H.
Kühnelt
, “
Simulating the mechanism of sound generation in flutes and flue pipes with the lattice-Boltzmann-method
,” in
Proceedings of the International Symposium on Musical Acoustics
,
Nara, Japan
(
2004
), pp.
251
254
.
6.
H.
Kühnelt
, “
Vortex sound in recorder- and flute-like instruments: Numerical simulation and analysis
,” in
Proceedings of the International Symposium on Musical Acoustics
,
Barcelona, Spain
(
2007
), pp.
1
8
.
7.
A. R.
da Silva
and
G.
Scavone
, “
Coupling lattice Boltzmann models to digital waveguides for wind instrument simulations
,” in
Proceedings of the International Symposium on Musical Acoustics
,
Barcelona, Spain
(
2007
), pp.
1
7
.
8.
A. R. D.
Silva
,
H.
Kühnelt
, and
G.
Scavone
, “
A brief survey of the lattice-Boltzmann method
,” in
Proceedings of the International Congress on Acoustics
,
Madrid, Spain
(
2007
), pp.
1
6
.
9.
Y.
Obikane
and
K.
Kuwahara
, “
Direct simulation for acoustic near fields using the compressible Navier–Stokes equation
,” in
Computational Fluid Dynamics 2008
(
Springer
,
New York
,
2009
). pp.
85
91
.
10.
Y.
Obikane
, “
Direct simulation on a fipple flute using the compressible Navier–Stokes equation
,”
World Acad. Sci. Eng. Technol.
4
,
794
798
(
2009
).
11.
Y.
Obikane
, “
Computational aeroacoustics on a small flute using a direct simulation
,” in
Computational Fluid Dynamics 2010
, edited by
A.
Kuzmin
(
Springer-Verlag
,
New York
,
2010
), pp.
435
441
.
12.
M.
Miyamoto
,
Y.
Ito
,
K.
Takahashi
,
T.
Takami
,
T.
Kobayashi
,
A.
Nishida
, and
M.
Aoyagi
, “
Applicability of compressible LES to reproduction of sound vibration of an air-reed instrument
,” in
Proceedings of the International Symposium on Musical Acoustics
,
Sydney and Katoomba, Australia
(
2010
).
13.
M.
Miyamoto
,
Y.
Ito
,
K.
Takahashi
,
T.
Takami
,
T.
Kobayashi
,
A.
Nishida
, and
M.
Aoyagi
, “
Numerical study on sound vibration of an air-reed instrument with compressible LES
,” arXiv:1005.3413v1.
14.
M.
Miyamoto
,
Y.
Ito
,
T.
Iwasaki
,
T.
Akamura
,
K.
Takahashi
,
T.
Takami
,
T.
Kobayashi
,
A.
Nishida
, and
M.
Aoyagi
, “
Numerical study on acoustic oscillations of 2d and 3d flue organ pipe like instruments with compressible LES
,”
Acta Acust. Acust.
99
,
154
171
(
2013
).
15.
K.
Takahashi
,
T.
Iwasaki
,
T.
Akamura
,
Y.
Nagao
,
K.
Nakano
,
T.
Kobayashi
,
T.
Takami
,
A.
Nishida
, and
M.
Aoyagi
, “
Effective techniques and crucial problems of numerical study on flue instruments
,”
Proc. Meet. Acoust.
19
,
035021
(
2013
).
16.
N.
Giordano
, “
Direct numerical simulation of the recorder in two and three dimensions
,”
Proc. Meet. Acoust.
19
,
035062
(
2013
).
17.
N.
Giordano
, “
Numerical modeling of a recorder in three dimensions
,” in
Proceedings of the Stockholm Music Acoustics Conference (SMAC 13)
,
SMAC1
SMAC5
(
2013
).
18.
J.
Martin
,
The Acoustics of the Recorder
(
Moeck
,
Berlin
,
1993
),
112
pp.
19.
J. J. D.
Anderson
,
Computational Fluid Dynamics
(
McGraw-Hill
,
New York
,
1995
),
574
pp.
20.
R. W.
MacCormack
, “
The effect of viscosity in hypervelocity impact cratering
,”
AAIA Paper
69–354
,
1
7
(
1969
).
21.
A.
Jameson
,
W.
Schmidt
, and
E.
Turkel
, “
Numerical solution of the Euler equations by finite volume methods using Runge Kutta time stepping schemes
,”
AAIA Paper
81–1289
,
1
14
(
1981
).
22.
D.
Botteldooren
, “
Acoustical finite-difference time-domain simulation in a quasi-Cartesian grid
,”
J. Acoust. Soc. Am.
95
,
2313
2319
(
1994
).
23.
D.
Botteldooren
, “
Finite-difference time-domain simulation of low-frequency room acoustic problems
,”
J. Acoust. Soc. Am.
98
,
3302
3308
(
1995
).
24.
L. L.
Beranek
, “
Acoustic impedance of commercial materials and the performance of rectangular rooms with one treated surface
,”
J. Acoust. Soc. Am.
12
,
14
23
(
1940
).
25.
B.
Fabre
,
A.
Hirschberg
, and
A. P. J.
Wijnands
, “
Vortex shedding in steady oscillation of a flue organ pipe
,”
Acta Acust. Acust.
82
,
863
877
(
1996
).
26.
G. K.
Batchelor
, “
Computation of the energy spectrum in homogeneous two-dimensional turbulence
,”
Phys. Fluids Suppl.
12
, II-
233
239
(
1969
).
27.
C.
Ségoufin
,
B.
Fabre
,
M. P.
Verge
,
A.
Hirschberg
, and
A. P. J.
Wijnands
, “
Experimental study of the influence of the mouth geometry on sound production in a recorder-like instrument: Windway length and chamfers
,”
Acta Acust. Acust.
86
,
649
661
(
2000
).
28.
A. W.
Nolle
and
T. L.
Finch
, “
Starting transients of flue organ pipes in relation to pressure rise time
,”
J. Acoust. Soc. Am.
91
,
2190
2202
(
1992
).
29.
N.
Bak
, “
Pitch, temperature and blowing pressure in recorder playing. study of treble recorders
,”
Acustica
22
,
296
299
(
1969
).
You do not currently have access to this content.