Offshore piling for wind farm construction has attracted a lot of attention in recent years due to the extremely high noise emission levels associated with such operations. While underwater noise levels were shown to be harmful for the marine biology, the propagation of airborne piling noise over sea has not been studied in detail before. In this study, detailed numerical calculations have been performed with the Green's Function Parabolic Equation (GFPE) method to estimate noise levels up to a distance of 10 km. Measured noise emission levels during piling of pinpiles for a jacket-foundation wind turbine were assessed and used together with combinations of the sea surface state and idealized vertical sound speed profiles (downwind sound propagation). Effective impedances were found and used to represent non-flat sea surfaces at low-wind sea states 2, 3, and 4. Calculations show that scattering by a rough sea surface, which decreases sound pressure levels, exceeds refractive effects, which increase sound pressure levels under downwind conditions. This suggests that the presence of wind, even when blowing downwind to potential receivers, is beneficial to increase the attenuation of piling sound over the sea. A fully flat sea surface therefore represents a worst-case scenario.

1.
R.
Green
and
N.
Vasilakos
, “
The economics of offshore wind
,”
Energ. Policy
39
,
496
502
(
2011
).
2.
European Wind Energy Association
, “
Pure power: Wind energy scenarios up to 2030
,” Report, European Wind Energy Association (
2008
).
3.
P.
Madsen
,
M.
Wahlberg
,
J.
Tougaard
,
K.
Lucke
, and
P.
Tyack
, “
Wind turbine underwater noise and marine mammals: Implications of current knowledge and data needs
,”
Mar. Ecol. Prog. Ser.
309
,
279
295
(
2006
).
4.
C.
de Jong
and
M.
Ainslie
, “
Underwater radiated noise due to the piling for the Q7 offshore wind park
,”
Proceedings of Acoustics'08
,
Paris, France
(
2008
), pp.
117
122
.
5.
H.
Bailey
,
B.
Senior
,
D.
Simmons
,
J.
Rusin
,
G.
Picken
, and
P. M.
Thompson
, “
Assessing underwater noise levels during pile driving at an offshore windfarm and its potential effects on marine mammals
,”
Mar. Pollut. Bull.
60
,
888
897
(
2010
).
6.
M.
Zampolli
,
M.
Nijhof
,
C.
de Jong
,
M.
Ainslie
,
E.
Jansen
, and
B.
Quesson
, “
Validation of finite element computations for the quantitative prediction of underwater noise from impact pile driving
,”
J. Acoust. Soc. Am.
133
,
72
81
(
2013
).
7.
P.
Reinhall
and
P.
Dahl
, “
Underwater Mach wave radiation from impact pile driving: Theory and observation
,”
J. Acoust. Soc. Am.
130
,
1209
1216
(
2011
).
8.
A.
Norro
,
B.
Rumes
, and
S.
Degraer
, “
Differentiating between underwater construction noise of monopile and jacket foundations for offshore windmills: A case study from the Belgian part of the North Sea
,”
Sci. World J.
897624
(
2013
).
9.
J.
Tougaard
,
J.
Carstensen
,
J.
Teilmann
,
H.
Skov
, and
P.
Rasmussen
, “
Pile driving zone of responsiveness extends beyond 20 km for harbour porpoises (Phocoena phocoena (L))
,”
J. Acoust. Soc. Am.
126
,
11
14
(
2009
).
10.
J.
Tougaard
,
O.
Henriksen
, and
L.
Miller
, “
Underwater noise from three offshore wind turbines: Estimation of impact zones for harbor porpoises and harbor seals
,”
J. Acoust. Soc. Am.
125
,
3766
3773
(
2009
).
11.
J.
David
, “
Likely sensitivity of bottlenose dolphins to pile driving noise
,”
Water Environ. J.
20
,
48
54
(
2006
).
12.
J.
Carstensen
,
O.
Henriksen
, and
J.
Teilmann
, “
Impacts on harbour porpoises from offshore wind farm construction: Acoustic monitoring of echolocation activity using porpoise detectors (T-PODs)
,”
Mar. Ecol. Prog. Ser.
321
,
295
308
(
2006
).
13.
K.
Lucke
,
P.
Lepper
,
M.
Blanchet
, and
U.
Siebert
, “
The use of an air bubble curtain to reduce the received sound levels for harbour porpoises
,”
J. Acoust. Soc. Am.
130
,
3406
3412
(
2011
).
14.
K.
Attenborough
,
K.
Li
, and
K.
Horoshenkov
,
Predicting Outdoor Sound
(
Taylor and Francis
,
New York
,
2007
),
456
pp.
15.
E.
Salomons
,
Computational Atmospheric Acoustics
(
Kluwer
,
Dordrecht
,
2001
),
348
pp.
16.
J.
Senne
,
A.
Song
,
M.
Badiey
, and
K.
Smith
, “
Parabolic equation modeling of high frequency acoustic transmission with an evolving sea surface
,”
J. Acoust. Soc. Am.
132
,
1311
1318
(
2012
).
17.
S.
Walstead
and
G.
Deane
, “
Reconstructing surface wave profiles from reflected acoustic pulses
,”
J. Acoust. Soc. Am.
133
,
2597
2611
(
2013
).
18.
C.
Eckart
, “
The scattering of sound from the sea surface
,”
J. Acoust. Soc. Am.
25
,
566
570
(
1953
).
19.
S.
Mitchell
and
F.
Machell
, “
Observations of low-frequency acoustic interaction with the ocean surface
,”
J. Acoust. Soc. Am.
86
,
1118
1123
(
1989
).
20.
P.
Boulanger
and
K.
Attenborough
, “
Effective impedance spectra for predicting rough sea effects on atmospheric impulsive sounds
,”
J. Acoust. Soc. Am.
117
,
751
762
(
2005
).
21.
E.
Salomons
, “
Computational study of sound propagation over undulating water
,” in
Proceedings of 19th International Congress on Acoustics
,
Madrid, Spain
(
2007
).
22.
K.
Bolin
,
M.
Boué
, and
I.
Karasalo
, “
Long range sound propagation over a sea surface
,”
J. Acoust. Soc. Am.
126
,
2191
2197
(
2009
).
23.
ISO 9613-1
:
Acoustics—Attenuation of Sound During Propagation Outdoors—Part 1: Calculation of the Absorption of Sound by the Atmosphere
(
International Organisation for Standardisation
,
Geneva, Switzerland
,
1993
).
24.
ISO 9613-2
:
Acoustics—Attenuation of Sound During Propagation Outdoors—Part 2: General Method of Calculation
(
International Organisation for Standardisation
,
Geneva, Switzerland
,
1996
).
25.
K.
Gilbert
and
X.
Di
, “
A fast Green's function method for one-way sound propagation in the atmosphere
,”
J. Acoust. Soc. Am.
94
,
2343
2352
(
1993
).
26.
E.
Salomons
, “
Improved Green's function parabolic equation method for atmospheric sound propagation
,”
J. Acoust. Soc. Am.
104
,
100
111
(
1998
).
27.
P.
Blanc-Benon
and
D.
Juve
, “
Outdoor sound propagation in complex environments: Recent developments in the PE method
,”
Proceedings of Forum Acusticum 2002
,
Sevilla, Spain
(
2002
).
28.
T.
Van Renterghem
,
D.
Botteldooren
, and
P.
Lercher
, “
Comparison of measurements and predictions of sound propagation in a valley-slope configuration in an inhomogeneous atmosphere
,”
J. Acoust. Soc. Am.
121
,
2522
2533
(
2007
).
29.
A.
Obukhov
, “
Turbulence in an atmosphere with non-uniform temperature
,”
Trudy Inst. Teoret. Geofiz. Nauk SSSR
1
,
95
115
(
1946
).
A.
Obukhov
,
Translation in Bound.-Layer Meteorol.
2
,
7
29
(
1971
).
30.
A.
Monin
and
A.
Obukhov
, “
Basic laws of turbulent mixing in the surface layer of the atmosphere
,”
Trudy Geofiz. Inst. Acad. Nauk SSSR
24
,
163
187
(
1954
).
31.
J.
Edson
and
C.
Fairall
, “
Similarity relationships in the marine atmospheric surface layer for terms in the TKE and scalar variance budgets
,”
J. Atmos. Sci.
55
,
2311
2328
(
1998
).
32.
U.
Högström
, “
Review of some basic characteristics of the atmospheric surface layer
,”
Boundary Layer Meteorol.
78
,
215
246
(
1996
).
33.
C.
Paulson
, “
The mathematical representation of wind speed and temperature profiles in the unstable atmospheric surface layer
,”
J. Appl. Meteorol.
9
,
857
861
(
1970
).
34.
A.
Dyer
, “
A review of flux-profile relationships
,”
Bound. Layer Meteorol.
7
,
363
372
(
1974
).
35.
H.
Charnock
, “
Wind stress over a water surface
,”
Q. J. R. Meteorol. Soc.
81
,
639
640
(
1955
).
36.
S.
Smith
, “
Coefficients for sea surface wind stress, heat flux and wind profiles as a function of wind speed and temperature
,”
J. Geophys. Res.
93
,
15467
15474
, doi: (
1988
).
37.
A.
Peña
and
S.
Gryning
, “
Charnock's roughness length model and non-dimensional wind profiles over the sea
,”
Bound. Layer Meteorol.
128
,
191
203
(
2008
).
38.
H.
Johnson
,
J.
Højstrup
,
H.
Vested
, and
S.
Larsen
, “
On the dependence of sea surface roughness on wind waves
,”
J. Phys. Oceanogr.
28
,
1702
1716
(
1998
).
39.
H.
Johnson
, “
Simple expressions for correcting wind speed data for elevation
,”
Coast. Eng.
36
,
263
269
(
1999
).
40.
J.
Wu
, “
Wind-stress coefficients over sea surface near neutral conditions—A revisit
,”
J. Phys. Oceanogr.
10
,
727
740
(
1980
).
41.
H.
Lettau
, “
Note on aerodynamic roughness-parameter estimation on the basis of roughness-element description
,”
J. Appl. Meteor.
8
,
828
832
(
1969
).
42.
A.
L'Esperance
,
J.
Nicholas
,
K.
Wilson
,
D.
Thomson
,
Y.
Gabillet
, and
G.
Daigle
, “
Sound propagation in the atmospheric surface layer: Comparison of experiment with FFP predictions
,”
Appl. Acoust.
40
,
325
346
(
1993
).
43.
A.
Van Wijk
,
A.
Beljaars
,
A.
Holtslag
, and
W.
Turkenburg
, “
Evaluation of stability corrections in wind speed profiles over the North Sea
,”
J. Wind Eng. Ind. Aerodyn.
33
,
551
566
(
1990
).
44.
W.
Pierson
and
L.
Moskowitz
, “
A proposed spectral form for fully developed wind seas based on the similarity theory of A. A. Kitaigorodskii
,”
J. Geophys. Res.
69
,
5181
5190
, doi: (
1964
).
45.
O.
Phillips
, “
The equilibrium range in the spectrum of wind-generated waves
,”
J. Fluid Mech.
4
,
426
434
(
1958
).
46.
J.
Alves
and
M.
Banner
, “
Revisiting the Pierson Moskowitz asymptotic limits for fully developed wind waves
,”
J. Phys. Oceanogr.
33
,
1301
1323
(
2003
).
47.
D.
Hasselmann
,
M.
Dunckel
, and
J.
Ewing
, “
Directional wave spectra observed during JONSWAP 1973
,”
J. Phys. Oceanogr.
10
,
1264
1280
(
1980
).
48.
D.
Carter
, “
Prediction of wave height and period for a constant wind velocity using the JONSWAP results
,”
Ocean Eng.
9
,
17
33
(
1982
).
49.
E.
Thornton
and
R.
Guza
, “
Transformation of wave height distribution
,”
J. Geophys. Res.
88
,
5925
5938
, doi: (
1983
).
50.
D.
Botteldooren
, “
Finite-difference time-domain simulation of low-frequency room acoustic problems
,”
J. Acoust. Soc. Am.
98
,
3302
3308
(
1995
).
51.
T.
Van Renterghem
and
D.
Botteldooren
, “
Prediction-step staggered-in-time FDTD: An efficient numerical scheme to solve the linearised equations of fluid dynamics in outdoor sound propagation
,”
Appl. Acoust.
68
,
201
216
(
2007
).
You do not currently have access to this content.