Measurements of the transmit beam patterns emitted by echolocating bats have previously been limited to cross-sectional planes or averaged over multiple signals using sparse microphone arrays. To date, no high-resolution measurements of individual bat transmit beams have been reported in the literature. Recent studies indicate that bats may change the time-frequency structure of their calls depending on the task, and suggest that their beam patterns are more dynamic than previously thought. To investigate beam pattern dynamics in a variety of bat species, a high-density reconfigurable microphone array was designed and constructed using low-cost ultrasonic microphones and custom electronic circuitry. The planar array is 1.83 m wide by 1.42 m tall with microphones positioned on a 2.54 cm square grid. The system can capture up to 228 channels simultaneously at a 500 kHz sampling rate. Beam patterns are reconstructed in azimuth, elevation, and frequency for visualization and further analysis. Validation of the array measurement system and post-processing functions is shown by reconstructing the beam pattern of a transducer with a fixed circular aperture and comparing the result with a theoretical model. To demonstrate the system in use, transmit beam patterns of the big brown bat, Eptesicus fuscus, are shown.

1.
G.
Neuweiler
,
The Biology of Bats
(
Oxford University Press
,
New York
,
2000
), p.
320
.
2.
R.
Müller
, “
Numerical analysis of biosonar beamforming mechanisms and strategies in bats
,”
J. Acoust. Soc. Am.
128
,
1414
1425
(
2010
).
3.
D.
Griffin
,
Listening in the Dark, The Acoustic Orientation of Bats and Men
(
Cornell University Press
,
London
,
1958
), p.
415
.
4.
J. A.
Simmons
, “
Acoustic radiation patterns for the echolocating bats Chilonycteris rubiginosa and Eptesicus fuscus
,”
J. Acoust. Soc. Am.
46
,
1054
1056
(
1969
).
5.
D.
Hartley
and
R.
Suthers
, “
The sound emission pattern of the echolocating bat, Eptesicus fuscus
,”
J. Acoust. Soc. Am.
85
,
1348
1351
(
1989
).
6.
K.
Ghose
and
C.
Moss
, “
The sonar beam pattern of a flying bat as it tracks tethered insects
,”
J. Acoust. Soc. Am.
114
,
1120
1131
(
2003
).
7.
K.
Ghose
,
C.
Moss
, and
T.
Horiuchi
, “
Flying big brown bats emit a beam with two lobes in the vertical plane
,”
J. Acoust. Soc. Am.
122
,
3717
3724
(
2007
).
8.
A.
Surlykke
,
S.
Boel Pedersen
, and
L.
Jakobsen
, “
Echolocating bats emit a highly directional sonar sound beam in the field
,”
Proc. R. Soc. London, Ser. B
276
,
853
860
(
2009
).
9.
Y.
Yovel
,
B.
Falk
,
C. F.
Moss
, and
N.
Ulanovsky
, “
Optimal localization by pointing off axis
,”
Science
327
,
701
704
(
2010
).
10.
N.
Matsuta
,
S.
Hiryu
,
E.
Fujioka
,
Y.
Yamada
,
H.
Riquimaroux
, and
Y.
Watanabe
, “
Adaptive beam-width control of echolocation sounds by CF-FM bats, Rhinolophus ferrumequinum nippon, during prey-capture flight
,”
J. Exp. Biol.
216
,
1210
1218
(
2013
).
11.
L.
Jakobsen
,
J. M.
Ratcliffe
, and
A.
Surlykke
, “
Convergent acoustic field of view in echolocating bats
,”
Nature
493
,
93
96
(
2014
).
12.
L.
Jakobsen
,
S.
Brinkløv
, and
A.
Surlykke
, “
Intensity and directionality of bat echolocation signals
,”
Front. Physiol.
4
, Article No. 89,
1
9
(
2013
).
13.
L.
Jakobsen
and
A.
Surlykke
, “
Vespertilionid bats control the width of their biosonar sound beam dynamically during prey pursuit
,”
Proc. Natl. Acad. Sci. U.S.A.
107
,
13930
13935
(
2010
).
14.
L.
Jakobsen
,
E. K. V.
Kalko
, and
A.
Surlykke
, “
Echolocation beam shape in emballonurid bats, Saccopteryx bilineata and Cormura brevirostris
,”
Behav. Ecol. Sociobiol.
66
,
1493
1502
(
2012
).
15.
A.
Surlykke
,
L.
Jakobsen
,
E. K. V.
Kalko
, and
R. A.
Page
, “
Echolocation intensity and directionality of perching and flying fringe-lipped bats, Trachops cirrhosus (Phyllostomidae)
,”
Front. Physiol.
4
, Article No. 143,
1
9
(
2013
).
16.
R.
Müller
, “
A numerical study of the role of the tragus in the big brown bat
,”
J. Acoust. Soc. Am.
116
,
3701
3712
(
2004
).
17.
R.
Müller
and
J. C. T.
Hallam
, “
Knowledge mining for biomimetic smart antenna shapes
,”
Rob. Autom. Syst.
50
,
131
145
(
2005
).
18.
D.
Vanderelst
,
F.
De Mey
,
H.
Peremans
,
I.
Geipel
,
E.
Kalko
, and
U.
Firzlaff
, “
What noseleaves do for FM bats depends on their degree of sensorial specialization
,”
PLoS ONE
5
,
e11893
(
2010
).
19.
D.
Vanderelst
,
J.
Reijniers
,
J.
Steckel
, and
H.
Peremans
, “
Information generated by the moving pinnae of Rhinolophus rouxi: Tuning of the morphology at different harmonics
,”
PLoS ONE
6
,
e20627
(
2011
).
20.
D.
Vanderelst
,
R.
Jonas
, and
P.
Herbert
, “
The furrows of Rhinolophidae revisited
,”
J. R. Soc. Interface
9
,
1100
1103
(
2012
).
21.
D.
Vanderelst
,
Y.
Lee
,
I.
Geipel
,
E.
Kalko
,
Y. M.
Kuo
, and
H.
Peremans
, “
The noseleaf of Rhinolophus formosae focuses the frequency modulated (FM) component of the calls
,”
Front. Physiol.
4
,
1
8
(
2013
).
22.
P. W.
Moore
,
L. A.
Dankiewicz
, and
D. S.
Houser
, “
Beamwidth control and angular target detection in an echolocating bottlenose dolphin (Tursiops truncatus)
,”
J. Acoust. Soc. Am.
124
,
3324
3332
(
2008
).
23.
L. N.
Kloepper
,
P. E.
Nachtigall
,
M. J.
Donahue
, and
M.
Breese
, “
Active echolocation beam focusing in the false killer whale, Pseudorca crassidens
,”
J. Exp. Biol.
215
,
1306
1312
(
2012
).
24.
J.
Starkhammar
,
M.
Amundin
,
J.
Nilsson
,
T.
Jansson
,
S. A.
Kuczaj
,
M.
Almqvist
, and
H. W.
Persson
, “
47-channel burst-mode recording hydrophone system enabling measurements of the dynamic echolocation behavior of free-swimming dolphins
,”
J. Acoust. Soc. Am.
126
,
959
962
(
2009
).
25.
J. W.
Shaffer
,
D.
Moretti
,
S.
Jarvis
,
P.
Tyack
, and
M.
Johnson
, “
Effective beam pattern of the Blainville's beaked whale (Mesoplodon densirostris) and implications for passive acoustic monitoring
,”
J. Acoust. Soc. Am.
133
,
1770
1784
(
2013
).
26.
W.
Au
and
J.
Simmons
, “
Echolocation in dolphins and bats
,”
Phys. Today
60
,
40
45
(
2007
).
27.
M.
Gillette
and
H.
Silverman
, “
A linear closed-form algorithm for source localization from time-differences of arrival
,”
IEEE Signal Process. Lett.
15
,
1
4
(
2008
).
28.
O.
Akay
and
G.
Boudreaux-Bartels
, “
Fractional convolution and correlation via operator methods and an application to detection of linear FM signals
,”
IEEE Trans. Signal Process.
49
,
979
993
(
2001
).
29.
J.
DiCecco
,
J. E.
Gaudette
, and
J. A.
Simmons
, “
Multi-component separation and analysis of bat echolocation calls
,”
J. Acoust. Soc. Am.
133
,
538
546
(
2013
).
30.
L. B.
Jackson
,
Digital Filters and Signal Processing with MATLAB Exercises
, 3rd ed. (
Klewer Academic
,
Norwell, MA
,
1995
), pp.
323
372
.
31.
ANSI S1.26-1995
(R2009):
Method for Calculation of the Absorption of Sound by the Atmosphere
(
American National Standards Institute
,
New York
,
2009
).
32.
W. I.
Futterman
, “
Dispersive body waves
,”
J. Geophys. Res.
67
,
5279
5291
, doi: (
1962
).
33.
T.
Bobach
and
G.
Umlauf
, “
Natural neighbor concepts in scattered data interpolation and discrete function approximation
,” in
Proceedings of Visualization of Large and Unstructured Data Sets
(
2007
), pp.
23
35
.
34.
J. A.
Simmons
,
M. B.
Fenton
,
W. R.
Ferguson
,
M.
Jutting
, and
J.
Palin
,
Apparatus for Research on Animal Ultrasonic Signals
(
Royal Ontario Museum
,
Toronto
,
1979
), p.
10
.
35.
L. B.
Jackson
, “
Frequency-domain Steiglitz-McBride method for least-squares IIR filter design, ARMA modeling, and periodogram smoothing
,”
IEEE Signal Process. Lett.
15
,
49
52
(
2008
).
36.
S.
Brinkløv
,
E. K. V.
Kalko
, and
A.
Surlykke
, “
Intense echolocation calls from two ‘whispering’ bats, Artibeus jamaicensis and Macrophyllum macrophyllum (Phyllostomidae)
,”
J. Exp. Biol.
212
,
11
20
(
2009
).
37.
A.
Surlykke
and
E. K. V.
Kalko
, “
Echolocating bats cry out loud to detect their prey
,”
PLoS ONE
3
,
e2036
(
2008
).
38.
R.
Urick
,
Principles of Underwater Sound
, 3rd ed. (
McGraw-Hill
,
New York
,
1983
), p.
43
.
You do not currently have access to this content.