Previous flow velocity measurements during phonation in canine larynges were done above the glottal exit. These studies found that vortical structures are present in the flow above the glottis at different phases of the glottal cycle. Some vortices were observed to leave the glottis during the closing phase and assumptions were proposed regarding their formation mechanism. In the current study, intraglottal velocity measurements are performed using PIV, and the intraglottal flow characteristics are determined. Results from five canine larynges show that at low subglottal pressure the glottis assumes a minimal divergence angle during closing and the flow separates at the glottal exit. Vortical structures are observed above the glottis but not inside. As the subglottal pressure is increased, the divergence angle between the folds during closing increases and the location of the flow separation moves upstream into the glottis. Entrainment flow enters the glottis to fill the void that is formed between the glottal jet and the fold. Vortical structures develop near the superior edge at medium and high subglottal pressures from the flow separation. The magnitude of their swirling strength changes as a function of the wall dynamics.

1.
J.
Van den Berg
, “
Myoelastic-aerodynamic theory of voice production
,”
J. Speech Lang. Hear. Res.
1
,
227
244
(
1958
).
2.
M.
Hirano
, “
Morphological structure of the vocal cord as a vibrator and its variations
,”
Folia. Phoniatr.
26
,
89
94
(
1974
).
3.
D.
Chhetri
,
Z.
Zhang
, and
J.
Neubauer
, “
Measurement of Young's modulus of vocal folds by indentation
,”
J. Voice
25
,
1
7
(
2011
).
4.
E.
Goodyer
,
F.
Muller
,
B.
Bramer
,
D.
Chauhan
, and
M.
Hess
, “
In vivo measurement of the elastic properties of the human vocal fold
,”
Eur. Arch. Otorhinolaryngol.
263
,
455
462
(
2006
).
5.
D.
Berry
,
D.
Montequin
, and
N.
Tayama
, “
High-speed digital imaging of the medial surface of the vocal folds
,”
J. Acoust. Soc. Am.
110
,
2539
2547
(
2001
).
6.
M.
Döllinger
,
D.
Berry
, and
G.
Berke
, “
A quantitative study of the medial surface dynamics of an in vivo canine vocal fold during phonation
,”
Laryngoscope
115
,
1646
1654
(
2005
).
7.
W.
Zhao
,
C.
Zhang
,
S.
Frankel
, and
L.
Mongeau
, “
Computational aeroacoustics of phonation, part I: Computational methods and sound generation mechanisms
,”
J. Acoust. Soc. Am.
112
,
2134
2146
(
2002
).
8.
G.
Decker
and
S.
Thomson
, “
Computational simulations of vocal fold vibration: Bernoulli versus Navier-Stokes
,”
J. Voice
21
,
273
284
(
2007
).
9.
F.
Alipour
and
R. C.
Scherer
, “
Flow separation in a computational oscillating vocal fold model
,”
J. Acoust. Soc. Am.
116
,
1710
1719
(
2004
).
10.
Z.
Zhang
, “
Influence of flow separation location on phonation onset
,”
J. Acoust. Soc. Am.
124
,
1689
1694
(
2008
).
11.
D.
Sciamarella
and
P.
Le Quéré
, “
Solving for unsteady airflow in a glottal model with immersed moving boundaries
,”
Eur. J. Mech. B/Fluids
27
,
42
53
(
2008
).
12.
B.
Kucinschi
,
R.
Scherer
,
K.
DeWitt
, and
T.
Ng
, “
Flow visualization and acoustic consequences of the air moving through a static model of the human larynx
,”
J. Biomech. Eng.
128
,
380
390
(
2006
).
13.
G.
Berke
,
D.
Moore
,
P.
Monkewitz
,
D.
Hanson
, and
B.
Gerratt
, “
A preliminary study of particle velocity during phonation in an in vivo canine model
,”
J. Voice
3
,
306
313
(
1989
).
14.
A.
Verneuil
,
D.
Berry
,
J.
Kreiman
,
B.
Gerratt
,
Y.
Ming
, and
G.
Berke
, “
Modeling measured glottal volume velocity waveforms
,”
Ann. Otol. Rhinol. Laryngol.
112
,
120
131
(
2003
).
15.
F.
Alipour
and
R.
Scherer
, “
Pulsatile airflow during phonation: An excised larynx model
,”
J. Acoust. Soc. Am.
97
,
1241
1248
(
1995
).
16.
S.
Khosla
,
S.
Muruguppan
,
E.
Gutmark
, and
R.
Scherer
, “
Vortical flow field during phonation in an excised canine larynx model
,”
Ann. Otol. Rhinol. Laryngol.
116
,
217
228
(
2007
).
17.
T.
Morel
, “
Comprehensive design of axisymmetric wind tunnel contractions
,”
J. Fluids Eng.
97
,
225
233
(
1975
).
18.
R.
Mehta
, “
Turbulent boundary layer perturbed by a screen
,”
AIAA J.
23
,
1335
1342
(
1985
).
19.
M.
Golla
,
D.
Deliyski
,
R.
Orlikoff
, and
H.
Moukalled
, “
Objective comparison of the electroglottogram to synchronous high-speed images of vocal-fold contact during vibration
,” in
Proceedings of the 6th International Workshop on Models and Analysis of Vocal Emissions for Biomedical Applications MAVEBA
, edited by
C.
Manfredi
(
2009
), Vol.
6
, pp.
141
144
.
20.
R.
Chein
and
J.
Chung
, “
Simulation of particle dispersion in a two dimensional mixing layer
,”
AIChE J.
34
,
946
954
(
1988
).
21.
C.
Crowe
,
J.
Chung
, and
T.
Troutt
, “
Particle mixing in free shear flows
,”
Prog. Energy Combust. Sci.
14
,
171
194
(
1988
).
22.
S.
Granqvist
,
S.
Hertegård
,
H.
Larsson
, and
J.
Sundberg
, “
Simultaneous analysis of vocal fold vibration and transglottal airflow: Exploring a new experimental setup
,”
J. Voice
17
,
319
330
(
2003
).
23.
R.
Adrian
,
K.
Christensen
, and
Z.-C.
Liu
, “
Analysis and interpretation of instantaneous turbulent velocity fields.
Exp. Fluids
29
,
275
290
(
2000
).
24.
M.
Van Dyke
,
An Album of Fluid Motion
(
The Parabolic Press
,
Stanford, CA
,
1982
), pp.
24
59
.
25.
E.
Gutmark
and
C.
Ho
, “
Preferred modes and the spreading rates of jets
,”
Phys. Fluids
26
,
2932
2938
(
1983
).
26.
K.
Stevens
,
Acoustic Phonetics
(
MIT Press
,
Cambridge, MA
,
1998
), Chaps. 1–3, pp.
1
202
.
27.
R. C.
Scherer
,
S.
Torkaman
,
B. R.
Kucinschi
, and
A. A.
Afjeh
, “
Intraglottal pressures in a three-dimensional model with a non-rectangular glottal shape
,”
J. Acoust. Soc. Am.
128
,
828
838
(
2010
).
28.
F.
Muijres
,
L.
Johansson
,
R.
Barfield
,
M.
Wolf
,
G.
Spedding
, and
A.
Hedenström
, “
Leading-edge vortex improves lift in slow-flying bats
,”
Science
319
,
1250
1253
(
2008
).
29.
A.
Barney
,
C. H.
Shadle
, and
P.
Davies
, “
Fluid flow in a dynamic mechanical model of the vocal folds and tract. I. Measurements and theory
,”
J. Acoust. Soc. Am.
105
,
444
455
(
1999
).
You do not currently have access to this content.