This paper presents an alternative formulation of Biot's theory to account for the elastic frame effects in a porous medium in which the acoustical properties of the fluid phase are predicted with an equivalent fluid model. This approach was originally developed for a double porosity medium. In this paper, the alternative formulation is applied to predict the transmission loss and absorption coefficient in the case of a single layer fibrous material, a multi-layer system, vibrating perforated plates, and porous composite materials. In the proposed formulation the coupling coefficients in Biot's poroelasticity equations are expressed in terms of the dynamic volumic mass and dynamic bulk modulus. By doing so, the elastic properties of the material frame are considered independently from the properties of the fluid. This formulation is implemented in the form of a transfer matrix algorithm which is validated against experimental data on sound absorption and sound transmission which are obtained for a range of various sound excitations and material arrangements. It is shown that this approach is able to predict accurately the acoustical properties of vibrating perforated plates and porous composites. The proposed approach is sufficiently general to be implemented in a finite element method.

1.
E.
Sanchez-Palencia
,
Non-homogeneous Media and Vibration Theory
(
Springer Verlag
,
Berlin
,
1980
).
2.
C.
Zwikker
and
W.
Kosten
,
Sound Absorbing Materials
(
Elsevier
,
New York
,
1949
).
3.
M. A.
Biot
, “
Theory of propagation of elastic waves in a fluid-saturated porous solid. I. Low-frequency range,”
J. Acoust. Soc. Am.
28
,
168
178
(
1956
).
4.
M. A.
Biot
, “
Theory of propagation of elastic waves in a fluid-saturated porous solid. II. Higher frequency range
,”
J. Acoust. Soc. Am.
28
,
179
191
(
1956
).
5.
O.
Dazel
,
B.
Brouard
,
C.
Depollier
, and
S.
Griffiths
, “
An alternative Biot's displacement formulation for porous materials
,”
J. Acoust. Soc. Am.
121
,
3509
3516
(
2007
).
6.
N.
Atalla
,
R.
Panneton
, and
P.
Debergue
, “
A mixed displacement-pressure formulation for poroelastic materials
,”
J. Acoust. Soc. Am.
104
,
1444
1452
(
1998
).
7.
A.
Attenborough
, “
Acoustical characteristics of rigid fibrous absorbents and granular materials
,”
J. Acoust. Soc. Am.
73
,
785
799
(
1983
).
8.
Y.
Champoux
and
J.-F.
Allard
, “
Dynamic tortuosity and bulk modulus in air-saturated porous media
,”
J. Appl. Phys.
70
,
1975
1979
(
1991
).
9.
M. R.
Stinson
and
Y.
Champoux
, “
Propagation of sound and the assignment of shape factors in model porous materials having simple pore geometries
,”
J. Acoust. Soc. Am.
91
,
685
695
(
1992
).
10.
D.
Lafarge
,
P.
Lemarinier
,
J.-F.
Allard
, and
V.
Tarnow
, “
Dynamic compressibility of air in porous structures at audible frequencies”
J. Acoust. Soc. Am.
102
,
1995
2006
(
1997
).
11.
D. K.
Wilson
, “
Simple, relaxational models for the acoustical properties of porous media
,”
Appl. Acoust.
50
,
171
188
(
1997
).
12.
E. A.
Skelton
and
J. H.
James
, “
Acoustics of anisotropic planar layered media
,”
J. Sound Vib.
152
,
157
174
(
1992
).
13.
S.
Gorog
,
R.
Panneton
, and
N.
Atalla
, “
Mixed displacement-pressure formulation for acoustic anisotropic open porous media
,”
J. Appl. Phys.
82
,
4192
4196
(
1997
).
14.
P.
Khurana
,
L.
Boeckx
,
W.
Lauriks
,
P.
Leclaire
,
O.
Dazel
, and
J.-F.
Allard
, “
A description of transversely isotropic sound absorbing porous materials by transfer matrices
,”
J. Acoust. Soc. Am.
125
,
915
921
(
2009
).
15.
F.-X.
Bécot
and
F.
Sgard
, “
On the use of poroelastic materials for the control of the sound radiated by a cavity backed plate
,”
J. Acoust. Soc. Am.
120
,
2055
2066
(
2006
).
16.
H.-Y.
Lai
, “
Modeling of acoustical properties of limp fibrous materials
,” Ph.D. thesis, Purdue university (
1997
).
17.
R.
Panneton
, “
Comments on the limp frame equivalent fluid model for porous media
,”
J. Acoust. Soc. Am.
122
,
EL217
EL222
(
2007
).
18.
N.
Atalla
and
R.
Panneton
, “
The effects of multilayer sound-absorbing treatments on the noise field inside a plate backed cavity
,”
Noise Control Eng. J.
44
,
235
243
(
1996
).
19.
E.
Delany
and
E. N.
Bazley
, “
Acoustical properties of fibrous absorbent materials
,”
Appl. Acoust.
3
,
105
116
(
1970
).
20.
Y.
Miki
, “
Acoustical properties of porous materials—Modifications of Delany-Bazley models
,”
J. Acoust. Soc. Jpn. (E)
11
,
19
24
(
1990
).
21.
J.
Allard
and
N.
Atalla
,
Propagation of Sound in Porous Media: Modelling Sound Absorbing Materials
(
Wiley
,
Chichester
,
2009
), Chap. 12, Fig. 12.8.
22.
T. E.
Vigran
, “
Predicting the sound reduction index of finite size specimen by a simplified spatial windowing technique
,”
J. Sound. Vib.
325
,
507
512
(
2009
).
23.
M.
Villot
,
C.
Guigou
, and
L.
Gagliardini
, “
Predicting the acoustical radiation of finite size multi-layered structures by applying spatial windowing on infinite structures
,”
J. Sound Vib.
245
,
433
455
(
2001
).
24.
N.
Atalla
and
F.
Sgard
, “
Modeling of perforated plates and screens using rigid frame porous models
,”
J. Sound. Vib.
303
,
195
208
(
2007
).
25.
D.
Takahashi
and
M.
Tanaka
, “
Flexural vibration of perforated plates and porous elastic materials under acoustic loading
,”
J. Acoust. Soc. Am.
112
,
1456
1464
(
2002
).
26.
D. L.
Johnson
,
J.
Koplik
, and
R.
Dashen
, “
Theory of dynamic permeability and tortuosity in fluid-saturated porous media
,”
J. Fluid Mech.
176
,
379
402
(
1987
).
27.
F.-X.
Bécot
,
L.
Jaouen
, and
F.
Chevillotte
, “
Analytical modeling of deformable porous composites
,” in
Proceedings of Forum Acusticum 2011
, Aalborg, Denmark (
2011
).
28.
X.
Olny
and
C.
Boutin
, “
Acoustic wave propagation in double porosity media
,”
J. Acoust. Soc. Am.
114
,
73
89
(
2003
).
29.
R. M.
Christensen
and
K. H.
Lo
, “
Solutions for effective shear properties in three phase sphere and cylinder models
,”
J. Mech. Phys. Solids
27
,
315
330
(
1979
).
30.
J.-M.
Berthelot
,
Matriaux Composites: Comportement Mecanique et Analyse des Structures (Composite Materials: Mechanical Behavior and Structure Analysis)
(
Tec & Doc Lavoisier
,
Cachan
,
2005
).
31.
EN ISO 10534-2
,
Acoustics—Determination of Sound Absorption Coefficient and Impedance in Impedance Tubes—Part 2: Transfer-function Method
(
International Organization for Standardization
,
Geneva
,
1991
).
32.
J. Y.
Chung
and
D. A.
Blaser
, “
Transfer function method of measuring in-duct acoustic properties. I. Theory
,”
J. Acoust. Soc. Am.
68
,
907
913
(
1980
).
You do not currently have access to this content.