It has been shown in the earlier work of Umnova et al. [Noise Control Eng. 50, 204–210 (2002)] that interaction of a relatively long, high amplitude acoustic pulse with a rigid porous material can be accurately described accounting for the Forchheimer nonlinearity. In the present study, the goal is to determine whether the accuracy of the modeling can be improved in the case of a lower amplitude and a shorter pulse. A model that accounts for the Forchheimer's nonlinearity and the transient effects is developed. It is assumed that all the contributions to the viscous force are additive in the time domain. The governing equations are solved numerically using finite difference time domain scheme. The results are compared with the data for two granular materials. The latter are obtained in an impedance tube and in a shock tube experiments, where acoustic pulses with various amplitudes and durations are generated.

1.
S.
Sorek
,
A.
Levy
,
G.
Ben-Dor
, and
D.
Smeulders
, “
Contribution to theoretical/experimental developments in shock wave propagation in porous media
,”
Transp. Porous Media
36
,
63
100
(
1999
).
2.
O.
Umnova
,
K.
Attenborough
, and
A.
Cummings
, “
High amplitude pulse propagation and reflection from a rigid porous layer
,”
Noise Control Eng.
50
,
204
210
(
2002
).
3.
Z. E. A.
Fellah
and
C.
Depollier
, “
Transient acoustic wave propagation in rigid porous media: A time domain approach
,”
J. Acoust. Soc. Am.
107
,
683
688
(
2000
).
4.
Y. M.
Shtemler
,
I. R.
Shreiber
, and
A.
Britan
, “
Shock induced flows through packed beds: Transient regimes
,”
Acta Acust.
92
,
612
617
(
2006
).
5.
O.
Umnova
and
D.
Turo
, “
Time domain formulation of the equivalent fluid model for rigid porous media (L)
,”
J. Acoust. Soc. Am.
125
(
4
),
1860
1863
(
2009
).
6.
J. M.
Evans
and
K.
Attenborough
, “
Sound propagation in concentrated emulsions: Comparison of coupled phase model and core-shell model
,”
J. Acoust. Soc. Am.
112
(
5
),
1911
1917
(
2002
).
7.
L. D.
Landau
and
E. M.
Lifshitz
, “
Fluid Mechanics
,” in
Course of Theoretical Physics
, 2nd ed. (
Pergamon
,
Oxford
,
1959
), Vol.
6
, pp.
89
91
, 388.
8.
Y. S.
Lee
and
M. F.
Hamilton
, “
Time-domain modelling of pulsed finite-amplitude sound beams
,”
J. Acoust. Soc. Am.
97
,
906
917
(
1995
).
9.
R. O.
Cleveland
,
M. F.
Hamilton
, and
D. T.
Blackstock
, “
Time-domain modeling of finite-amplitude sound in relaxing fluid
,”
J. Acoust. Soc. Am.
99
,
3312
3318
(
1996
).
10.
D. L.
Johnson
,
J.
Koplik
, and
R.
Dashen
, “
Theory of dynamic permeability and tortuosity in fluid-saturated porous media
,”
J. Fluid. Mech.
176
,
379
402
(
1987
).
11.
Y.
Champoux
and
J.-F.
Allard
, “
Dynamic tortuosity and bulk modulus in air—Saturated porous media
,”
J. Appl. Phys.
70
,
1975
1979
(
1991
).
12.
D.
Lafarge
,
P.
Lemariner
,
J.-F.
Allard
, and
V.
Tarnow
, “
Dynamic compressibility of air in porous structures at audible frequencies
,”
J. Acoust. Soc. Am.
102
,
1995
2006
(
1997
).
13.
O.
Umnova
,
K.
Attenborough
,
E.
Standley
, and
A.
Cummings
, “
Behavior of rigid-porous layers at high levels of continuous acoustic excitation: Theory and experiment
,”
J. Acoust. Soc. Am.
114
(
3
),
1346
1356
(
2003
).
14.
O.
Umnova
,
K.
Attenborough
,
H.-C.
Shin
, and
A.
Cummings
, “
Response of multiple rigid porous layers to high levels of continuous acoustic excitation
,”
J. Acoust. Soc. Am.
116
,
703
712
(
2004
).
15.
O.
Umnova
,
K.
Attenborough
, and
K. M.
Li
, “
A cell model for the acoustical properties of packings of spheres
,”
Acta Acust.
87
,
226
235
(
2001
).
16.
D. K.
Wilson
,
V. E.
Ostashev
,
S. L.
Collier
,
N. P.
Symons
,
D. F.
Aldridge
, and
D. H.
Marlin
, “
Time-domain calculations of sound interactions with outdoor ground surfaces
,”
Appl. Acoust.
68
,
173
200
(
2007
).
17.
W. F.
Ames
,
Numerical Methods for Partial Differential Equations
, 3rd ed. (
Academic
,
New York
,
1992
), pp.
165
229
.
18.
D.
Turo
and
O.
Umnova
, “
Time domain modelling of sound propagation in porous media and the role of shape factors
,”
Acta Acust.
96
,
225
238
(
2010
).
19.
E.
Standley
,
O.
Umnova
,
K.
Attenborough
,
A.
Cummings
, and
P.
Dutta
, “
Shock wave reflection measurements on porous materials
,”
Noise Control Eng. J.
50
(
6
),
224
230
(
2002
).
20.
K.
Naugolnykh
and
L.
Ostrovsky
,
Nonlinear Wave Processes in Acoustics
(
Cambridge University Press
,
Cambridge
,
1998
), pp.
7
9
.
21.
C. A. J.
Fletcher
,
Computational Techniques for Fluid Dynamics 2. Specific Techniques for Different Flow Categories
, 2nd ed. (
Springer-Verlag
,
Berlin
,
2006
), pp.
144
147
.
You do not currently have access to this content.