A theoretical and experimental study of the acoustic properties of porous materials containing dead-end (or partially opened) porosity was recently proposed by Dupont, Leclaire, Sicot, Gong, and Panneton [J. Appl. Phys. 110, 094903 (2011)]. The present article provides a description of partially opened porosity systems and their numerous potential applications in the general context of the study of porous materials, the classical models describing them, and the characterization techniques. It is shown that the dead-end pore effect can be treated independently and that the description of this effect can be associated with any acoustic model of porous media. Different theoretical developments describing the dead-end porosity effect are proposed. In particular, a model involving the average effective length of the dead-end pores is presented. It is also shown that if the dead-end effect can be treated separately, the transfer matrix method is particularly well suited for the description of single or multilayer systems with dead-end porosity.

1.
T.
Dupont
,
P.
Leclaire
,
O.
Sicot
,
X. L.
Gong
, and
R.
Panneton
, “
Acoustic properties of air-saturated porous materials containing dead-end porosity
,”
J. Appl. Phys.
110
,
094903
(
2011
).
2.
J. F.
Allard
and
N.
Atalla
,
Propagation of Sound in Porous Media: Modelling Sound Absorbing Materials
(
Elsevier
,
New York
,
1993
, 1st ed., and
Wiley
,
New York
,
2009
, 2nd ed.),
372
pp.
3.
G.
Kirchhoff
, “
On the influence of heat conduction in a on sound propagation
,”
Ann. Phys. Chem.
134
,
177
193
(
1868
).
4.
I. B.
Crandall
,
Theory of Vibrating Systems and Sound
(
Van Nostrand
,
New York
,
1927
).
5.
C.
Zwikker
and
C. W.
Kosten
,
Sound Absorbing Materials
(
Elsevier
,
New York
,
1949
), pp.
20
, 21.
6.
M. A.
Biot
, “
Theory of propagation of elastic waves in a fluid-saturated porous solid. I. Low frequency range. II. Higher frequency range
,”
J. Acoust. Soc. Am.
28
,
168
191
(
1956
).
7.
M. E.
Delany
and
E. N.
Bazley
, “
Acoustical properties of fibrous absorbent materials
,”
Appl. Acoust.
3
,
105
116
(
1970
).
8.
D. K.
Wilson
, “
Relaxation-matched modeling of propagation through porous media, including fractal pore structure
,”
J. Acoust. Soc. Am.
94
,
1136
1145
(
1993
).
9.
K.
Attenborough
, “
Acoustical characteristics of porous materials
,”
Phys. Rep.
82
,
179
227
(
1982
).
10.
D. L.
Johnson
,
J.
Koplik
, and
R.
Dashen
, “
Theory of dynamic permeability and tortuosity in fluid-saturated porous media
,”
J. Fluid. Mech.
176
,
379
402
(
1987
).
11.
Y.
Champoux
and
J. F.
Allard
, “
Dynamic tortuosity and bulk modulus in air-saturated porous media
,”
J. Appl. Phys.
70
,
1975
1979
(
1991
).
12.
D.
Lafarge
,
P.
Lemarinier
,
J. F.
Allard
, and
V.
Tarnow
, “
Dynamic compressibility of air in porous structures at audible frequencies
,”
J. Acoust. Soc. Am.
102
,
1995
2006
(
1997
).
13.
S. R.
Pride
,
F. D.
Morgan
, and
F. A.
Gangi
, “
Drag forces of porous-medium acoustics
,”
Phys. Rev. B
47
,
4964
4978
(
1993
).
14.
K. V.
Horoshenkov
and
M. J.
Swift
, “
The acoustic properties of granular materials with pore size distribution close to log-normal
,”
J. Acoust. Soc. Am.
5
,
2371
2378
(
2001
).
15.
R.
Panneton
, “
Comments on the limp frame equivalent fluid model for porous media
,”
J. Acoust. Soc. Am.
122
,
EL217
222
(
2007
).
16.
N.
Atalla
,
R.
Panneton
, and
P.
Debergue
, “
A mixed displacement pressure formulation for poroelastic materials
,”
J. Acoust. Soc. Am.
104
,
1444
1452
(
1998
).
17.
P.
Leclaire
,
L.
Kelders
,
W.
Lauriks
,
J. F.
Allard
, and
C.
Glorieux
, “
Ultrasonic wave propagation in reticulated foams saturated by different gases: High frequency limit of the classical models
,”
Appl. Phys. Lett.
69
,
2641
2643
(
1996
).
18.
X.
Olny
and
C.
Boutin
, “
Acoustic wave propagation in double porosity media
,”
J. Acoust Soc. Am.
114
,
73
89
(
2003
).
19.
Z. E. A.
Fellah
and
C.
Depollier
, “
Transient acoustic wave propagation in rigid porous media: A time-domain approach
,”
J. Acoust. Soc. Am.
107
,
683
688
(
2000
).
20.
L.
De Ryck
,
W.
Lauriks
,
P.
Leclaire
,
J. P.
Groby
,
A.
Wirgin
, and
C.
Depollier
, “
Reconstruction of material properties profiles in one-dimensional macroscopically inhomogeneous rigid frame porous media in the frequency domain
,”
J. Acoust. Soc. Am.
124
,
1591
1606
(
2008
), and references therein.
21.
G.
Gautier
,
L.
Kelders
,
J. P.
Groby
,
O.
Dazel
,
L.
De Ryck
, and
P.
Leclaire
, “
Propagation of acoustic waves in a one-dimensional macroscopically inhomogeneous poroelastic material
,”
J. Acoust. Soc. Am.
130
,
1390
1398
(
2011
).
22.
F.
Chevillotte
,
C.
Perrot
, and
R.
Panneton
, “
Microstructure based model for sound absorption predictions of perforated closed-cell metallic foams
,”
J. Acoust. Soc. Am.
128
,
1766
1776
(
2010
).
23.
P.
Leclaire
,
T.
Dupont
,
O.
Sicot
, and
X. L.
Gong
, “
Propriétés acoustiques de matériaux poreux saturés d'air incluant une porosité partiellement ouverte
” (“Acoustic properties of air-saturated porous materials incorporating a partially opened porosity”), in Proc. 10ème Congrès Français d'Acoustique, CFA, Lyon,
France
, Apr. 12–16 (
2010
).
24.
L. L.
Beranek
, “
Acoustic impedance of porous materials
,”
J. Acoust. Soc. Am.
13
,
248
260
(
1942
).
25.
ASTM D2856-94 (1998). Withdrawn Standard: ASTM D2856-94 (1998) “Standard Test Method for Open-Cell Content of Rigid Cellular Plastics by the Air Pycnometer” (withdrawn 2006). Withdrawn 2006 Replaced by ASTM D6226 – 10 “Standard Test Method for Open Cell Content of Rigid Cellular Plastics.”
26.
Y.
Champoux
,
M. R.
Stinson
, and
G. A.
Daigle
, “
Air-based system for the measurement of porosity
,”
J. Acoust. Soc. Am.
89
,
910
916
(
1991
).
27.
P.
Leclaire
,
O.
Umnova
,
K. V.
Horoshenkov
, and
L.
Maillet
, “
Porosity measurement by comparison of air volumes
,”
Rev. Sci. Instrum.
74
,
1366
1370
(
2003
).
28.
Y.
Salissou
and
R.
Panneton
, “
Pressure/mass method to measure open porosity of porous solids
,”
J. Appl. Phys.
101
,
124913
(
2009
).
29.
R.
Panneton
and
E.
Gros
, “
A missing mass method to measure the open porosity of porous solids
,”
Acta Acust. Acust.
91
,
342
348
(
2005
).
30.
ISO 9053:1991, Acoustics–Materials for acoustical applications– Determination of airflow resistance (
International Organization for Standardization
,
Geneva, Switzerland
,
2001
).
31.
P.
Lemarinier
,
M.
Henry
,
J. F.
Allard
,
J. L.
Bonardet
, and
A.
Gédéon
, “
Connection between the dynamic bulk modulus of air in a porous medium and the specific surface
,”
J. Acoust. Soc. Am.
97
,
3478
3482
(
1995
).
32.
D. L.
Johnson
,
T. J.
Plona
,
C.
Scala
,
F.
Pasierb
, and
H.
Kojima
, “
Tortuosity and acoustic slow waves
,”
Phys. Rev. Lett.
49
,
1840
1844
(
1982
).
33.
R.
Panneton
and
X.
Olny
, “
Acoustical determination of the parameters governing viscous dissipation in porous media
,”
J. Acoust. Soc. Am.
119
,
2027
2040
(
2006
).
34.
P. B.
Nagy
, “
Slow wave propagation in air-filled permeable solids
,”
J. Acoust. Soc. Am.
93
,
3224
3234
(
1993
).
35.
J. F.
Allard
,
B.
Castagnède
,
M.
Henry
, and
W.
Lauriks
, “
Evaluation of tortuosity in acoustic porous materials saturated by air
,”
Rev. Sci. Instrum.
65
,
754
755
(
1994
).
36.
P.
Leclaire
,
L.
Kelders
,
W.
Lauriks
,
N. R.
Brown
,
M.
Melon
, and
B.
Castagnède
, “
Determination of the viscous and thermal characteristic lengths of plastic foams by ultrasonic measurements in helium and air
,”
J. Appl. Phys.
80
,
2009
2012
(
1996
).
37.
Z. E. A.
Fellah
,
S.
Berger
,
W.
Lauriks
,
C.
Depollier
,
C.
Aristegui
, and
J.-Y.
Chapelon
, “
Measuring the porosity and the tortuosity of porous materials via reflected waves at oblique incidence
,”
J. Acoust. Soc. Am.
113
,
2424
2433
(
2003
).
38.
M. A.
Biot
and
D. G.
Willis
, “
The elastic coefficients of the theory of consolidation
,”
J. Appl. Mech.
24
,
594
601
(
1957
).
39.
T.
Pritz
, “
Apparent complex Young's modulus of a longitudinally vibrating viscoelastic rod
,”
J. Sound Vib.
77
,
93
100
(
1981
).
40.
L.
Jaouen
,
A.
Renault
, and
M.
Deverge
, “
Elastic and damping characterizations of acoustical porous materials: Available experimental methods and applications to a melamine foam
,”
Appl. Acoust.
69
,
1129
1140
(
2008
).
41.
J. F.
Allard
,
G.
Jansens
,
G.
Vermeir
, and
W.
Lauriks
, “
Frame-borne surface waves in air-saturated porous media
,”
J. Acoust. Soc. Am.
111
,
690
696
(
2002
).
42.
L.
Boeckx
,
P.
Leclaire
,
P.
Khurana
,
C.
Glorieux
,
W.
Lauriks
, and
J. F.
Allard
, “
Guided elastic waves in porous materials saturated by air under Lamb conditions
,”
J. Appl. Phys.
97
,
094911
(
2005
), and references therein.
43.
S.
Mahasaranon
,
K. V.
Horoshenkov
,
A.
Khan
, and
H.
Benkreira
, “
The effect of continuous pore stratification on the acoustic absorption in open cell foams
,”
J. Appl. Phys.
111
,
084901
(
2012
).
44.
D. T.
Blackstock
,
Fundamentals of Physical Acoustics
(
Wiley
,
New York
,
2000
), pp.
156
158
.
45.
R.
Panneton
,
T.
Dupont
, and
P.
Leclaire
, “
Modeling of a perforated solid with dead-end porosity by the transfer matrix method
,”
Proc. Symp. Acoustics of Poro-Elastic Materials (SAPEM)
,
Ferrara, Italy
(Dec. 14–16,
2011
).
46.
R.
Panneton
,
K.
Verdière
,
S.
Elkoun
,
T.
Dupont
, and
P.
Leclaire
, “
Acoustic modeling of locally reacting mosaic materials
,” in
Proc. Internoise 2012
,
New York
(August 19–22,
2012
).
47.
T.
Dupont
,
P.
Leclaire
, and
R.
Panneton
, “
Methods for measuring the porosities of porous materials incorporating dead-end pores
,”
Proc. Symp. Acoustics of Poro-Elastic Materials (SAPEM)
,
Ferrara, Italy
(Dec. 14–16,
2011
).
48.
T.
Dupont
,
P.
Leclaire
, and
R.
Panneton
, “
Acoustic methods for measuring the porosities of porous materials incorporating dead-end pores
,”
J. Acoust. Soc. Am.
133
,
2136
2145
(
2013
).
You do not currently have access to this content.