The interface between two wedges can be treated as a displacement discontinuity characterized by elastic stiffnesses. By representing the boundary between the two quarter-spaces as a displacement discontinuity, coupled wedge waves were determined theoretically to be dispersive and to depend on the specific stiffness of the non-welded contact between the two wedges. Laboratory experiments on isotropic and anisotropic aluminum confirmed the theoretical prediction that the velocity of coupled wedge waves, for a non-welded interface, ranged continuously from the single wedge wave velocity at low stress to the Rayleigh velocity as the load applied normal to the interface was increased. Elastic waves propagating along the coupled wedges of two quarter-spaces in non-welded contact are found to exist theoretically even when the material properties of the two quarter-spaces are the same.

1.
A. A.
Maradudin
,
R. F.
Wallis
,
D. L.
Mills
, and
R. L.
Ballard
, “
Vibrational edge modes in finite crystals
,”
Phys. Rev. B
6
(
4
),
1106
1111
(
1972
).
2.
P. E.
Lagasse
, “
Analysis of a dispersion free guide for elastic waves
,”
Electron. Lett.
8
,
372
373
(
1972
).
3.
S. L.
Moss
,
A. A.
Maradudin
, and
S. L.
Cunningham
, “
Vibrational edge modes for wedges with arbitrary interior angles
,”
Phys. Rev. B
8
,
2999
3008
(
1973
).
4.
M.
DeBilly
,
A. C.
Hladky-Hennion
, and
R.
Bossut
, “
On the localization of the antisymmetric flexural edge waves for obtuse angles
,”
Ultrason.
36
,
995
1001
(
1998
).
5.
M.
DeBilly
,
A. C.
Hladky-Hennion
, and
R.
Bossut
, “
The effect of imperfections on acoustic wave propagation along a wedge waveguide
,”
Ultrason.
37
,
413
416
(
1999
).
6.
M.
Debilly
, “
Acoustic technique applied to the measurement of the free edge wave velocity
Ultrason.
34
,
611
619
(
1996
).
7.
X.
Jia
and
M.
DeBilly
, “
Observation of the dispersion behavior of surface acoustic waves in a wedge waveguide by laser ultrasonics
,”
Appl. Phys. Lett.
61
,
2970
2972
(
1992
).
8.
R.
Adler
,
M.
Hoskins
,
S.
Datta
, and
B.
Hunsinger
, “
Unusual parametric effects on line acoustic waves
,”
IEEE Trans. Sonics Ultrason.
26
,
345
347
(
1979
).
9.
A. A.
Maradudin
, “
Edge modes
,”
Jpn. J. Appl. Phys. Suppl.
2
,
871
878
(
1974
).
10.
A. A.
Oliner
, “
Waveguides for acoustic surface waves: A review
,”
Proc. IEEE
64
,
615
627
(
1976
).
11.
A. A.
Maradudin
, “
Surface waves
,”
Feskorperprobleme
12
,
1
116
(
1981
).
12.
E.
Sokolova
,
A.
Kovalev
,
R.
Timler
, and
A.
Mayer
, “
On the dispersion of wedge acoustic waves
,”
Wave Motion
50
,
233
245
(
2013
).
13.
J.
McKenna
,
G. D.
Boyd
, and
R. N.
Thurston
, “
Plate theory solutions for guided flexural acoustic waves along the tip of a wedge
,”
IEEE Trans. Sonics Ultrason.
3
,
178
186
(
1974
).
14.
V. V.
Krylov
, “
Distinctive characteristics of guided surface-wave propagation in complex topographic structures
,”
Sov. Phys. Acoust.
33
,
407
411
(
1987
).
15.
A. A.
Maradudin
and
K. R.
Subbaswamy
, “
Edge localized vibration modes on a rectangular ridge
,”
J. Appl. Phys.
48
,
3410
3414
(
1977
).
16.
Z. L.
Li
,
I.
Achenbach
,
J. D.
Komsky
, and
Y. C.
Lee
, “
Reflection and transmission of obliquely incident surface waves by an edge of a quarter space: Theory and experiment
,”
J. Appl. Mech.
59
,
349
355
(
1992
).
17.
A. A.
Krushynska
, “
Flexural edge waves in semi-infinite elastic plates
,”
J. Sound Vib.
330
,
1964
1976
(
2011
).
18.
V. V.
Krylov
and
A. V.
Shanin
, “
Influence of elastic anisotropy on the velocities of acoustic wedge modes
,”
Sov. Phys. Acoust.
37
,
65
67
(
1991
).
19.
A. L.
Shuvalov
and
V. V.
Krylov
, “
Localized vibration modes in free anisotropic wedges
,”
J. Acoust. Soc. Am.
107
,
657
660
(
2000
).
20.
A. D.
Boardman
,
R.
Garcia-Molina
,
A.
Gras-Marti
, and
E.
Louis
, “
Electrostatic edge modes of a hyperbolic dielectric wedge: Analytical solution
,”
Phys. Rev. B
32
,
6045
6047
(
1985
).
21.
A.
Eguiluz
and
A. A.
Maradudin
, “
Electrostatic edge modes along a parabolic wedge
,”
Phys. Rev. B
14
,
5526
5528
(
1976
).
22.
M.
Debilly
, “
On the influence of loading on the velocity of guided acoustic waves propagating in linear elastic wedges
,”
J. Acoust. Soc. Am.
100
,
659
662
(
1996
).
23.
V. V.
Krylov
, “
On the velocities of localized vibration modes in immersed solid wedges
,”
J. Acoust. Soc. Am.
103
,
767
770
(
1998
).
24.
C.
Yang
and
I.
Liu
, “
Optical visualization of acoustic wave propagating along the wedge tip
,”
Proc. SPIE
8321
,
83211W
(
2011
).
25.
D.
Bogy
, “
Edge-bonded dissimilar orthogonal elastic wedges under normal and shear loading
,”
J. Appl. Mech.
35
,
460
466
(
1968
).
26.
D.
Bogy
, “
Two edge-bonded elastic wedges of different materials and wedge angles under surface tractions
,”
J. Appl. Mech.
38
,
377
386
(
1971
).
27.
B. V.
Budaev
and
D. B.
Bogy
, “
Scattering of Rayleigh and Stoneley waves by two adhering elastic wedges
,”
Wave Motion
33
,
321
337
(
2001
).
28.
E.
Sokolova
,
A.
Kovalev
,
A.
Maznev
, and
A.
Mayer
, “
Acoustic waves guided by the intersection of a surface and an interface of two elastic media
,”
Wave Motion
49
,
388
393
(
2012
).
29.
R.
Stoneley
, “
Elastic waves at the surface of separation of two solids
,”
Proc. R. Soc. London
106
,
416
428
(
1924
).
30.
G. S.
Murty
, “
Theoretical model for attenuation and dispersion of Stoneley waves at loosely bonded interface of elastic half spaces
,”
Phys. Earth Planet. Int.
11
,
65
79
(
1975
).
31.
M.
Schoenberg
, “
Elastic wave behavior across linear slip interfaces
,”
J. Acoust. Soc. Am.
68
,
1516
1521
(
1980
).
32.
L. J.
Pyrak-Nolte
,
L.
Myer
, and
N. G. W.
Cook
, “
Transmission of seismic waves across single natural fractures
,”
J. Geophys. Res.
95
(
B6
),
8617
8638
, doi: (
1990
).
33.
S.
Shao
and
L. J.
Pyrak-Nolte
, “
Interface waves along fractures in anisotropic media
,”
Geophys.
78
(
4
),
T99
T112
(
2013
).
34.
D. L.
Hopkins
, “
The implications of joint deformation in analyzing the properties and behavior of fractured rock masses, underground excavations and faults
,”
Int. J. Rock Mech. Min. Sci.
37
,
175
202
(
2000
).
35.
C.
Petrovitch
,
D.
Nolte
, and
L. J.
Pyrak-Nolte
, “
Scaling of fluid flow versus fracture stiffness
,”
Geophys. Res. Lett.
40
,
2076
2080
, doi: (
2013
).
36.
R.
Lubbe
,
J.
Sothcott
,
M. H.
Worthington
and
C.
McCann
, “
Laboratory estimates of normal and shear fracture compliance
,”
Geophys. Prospect.
56
,
239
247
(
2008
).
37.
C.
Hobday
and
M. H.
Worthington
, “
Field measurements of normal and shear fracture compliance
,”
Geophys. Prospect.
60
,
488
499
(
2012
).
38.
D.
Prikazchikov
, “
Rayleigh waves of arbitrary profile in anisotropic media
,”
Mech. Res. Comm.
50
,
83
86
(
2013
).
39.
W.
Ludwig
and
B.
Lengeler
, “
Surface waves and rotational invariance in lattice theory
,”
Solid State Commun.
2
,
83
86
(
1964
).
40.
Lord
Rayleigh
, “
On waves propagated along the plane surface of an elastic solid
,”
Proc. R. Soc. London A
17
,
4
11
(
1885
).
41.
L. J.
Pyrak-Nolte
and
D. D.
Nolte
, “
Wavelet analysis of velocity dispersion of elastic interface waves propagating along a fracture
,”
Geophys. Res. Lett.
22
(
11
),
1329
1332
, doi: (
1995
).
42.
L. J.
Pyrak-Nolte
,
J.
Xu
, and
G.
Haley
, “
Elastic interface waves propagating in a fracture
,”
Phys. Rev. Lett.
68
(
24
),
3650
3653
(
1992
).
43.
P.
Vinh
and
R. W.
Ogden
, “
On formulas for the Rayleigh wave speed
,”
Wave Motion
39
,
191
197
(
2004
).
44.
P.
Chadwick
, “
The existence of pure surface modes in elastic materials with orthorhombic symmetry
,”
J. Sound Vib.
47
(
1
),
39
52
(
1976
).
You do not currently have access to this content.