As an aid to understanding long-range acoustic propagation in the Philippine Sea, statistical and phenomenological descriptions of sound-speed variations were developed. Two moorings of oceanographic sensors located in the western Philippine Sea in the spring of 2009 were used to track constant potential-density surfaces (isopycnals) and constant potential-temperature surfaces (isotherms) in the depth range 120–2000 m. The vertical displacements of these surfaces are used to estimate sound-speed fluctuations from internal waves, while temperature/salinity variability along isopycnals are used to estimate sound-speed fluctuations from intrusive structure often termed spice. Frequency spectra and vertical covariance functions are used to describe the space-time scales of the displacements and spiciness. Internal-wave contributions from diurnal and semi-diurnal internal tides and the diffuse internal-wave field [related to the Garrett–Munk (GM) spectrum] are found to dominate the sound-speed variability. Spice fluctuations are weak in comparison. The internal wave and spice frequency spectra have similar form in the upper ocean but are markedly different below 170-m depth. Diffuse internal-wave mode spectra show a form similar to the GM model, while internal-tide mode spectra scale as mode number to the minus two power. Spice decorrelates rapidly with depth, with a typical correlation scale of tens of meters.

1.
Beron-Vera
,
F. J.
,
Brown
,
M. G.
,
Colosi
,
J. A.
,
Virovlyansky
,
A. L.
,
Zaslavsky
,
G. M.
,
Tomsovic
,
S.
, and
Wolfson
,
M. A.
(
2003
). “
Ray dynamics in a long range acoustic propagation experiment
,”
J. Acoust. Soc. Am.
114
,
1226
1242
.
3.
Colosi
,
J. A.
,
Duda
,
T. F.
,
Lin
,
T. T.
,
Lynch
,
J.
,
Newhall
,
A.
, and
Cornuelle
,
B. C.
(
2012
). “
Observations of sound speed fluctuations on the New Jersey continental shelf in the summer of 2006
,”
J. Acoust. Soc. Am.
131
(
2
),
1733
1748
.
4.
Cornuelle
,
B. D.
,
Wunsch
,
C.
,
Behringer
,
D.
,
Birdsall
,
T. G.
,
Brown
,
M. G.
,
Heinmiller
,
R.
,
Knox
,
R. A.
,
Metzger
,
K.
,
Munk
,
W. H.
,
Spiesberger
,
J. L.
,
Spindel
,
R. C.
,
Webb
,
D. C.
, and
Worcester
,
P. F.
(
1985
). “
Tomographic maps of the ocean mesoscale. 1 Pure acoustics
,”
J. Phys. Oceanogr.
15
,
133
152
.
5.
Dushaw
,
B. D.
,
Cornuelle
,
B. D.
,
Worcester
,
P. F.
,
Howe
,
B. M.
, and
Luther
,
D. S.
(
1995
). “
Barotropic and baroclinic tides in the central North Pacific Ocean determined from long-range reciprocal acoustic transmission
,”
J. Phys. Oceanogr.
25
(
4
),
631
647
.
6.
Dushaw
,
B. D.
,
Worcester
,
P. F.
, and
Dzieciuch
,
M. A.
(
2011
). “
On the predictability of mode-1 internal tides
,”
Deep Sea Res. I
58
,
677
698
.
7.
Dzieciuch
,
M. A.
,
Munk
,
W. H.
, and
Rudnick
,
D.
(
2004
). “
Propagation of sound through a spicy ocean, the sofar overture
,”
J. Acoust. Soc. Am.
116
(
3
),
1447
1462
.
8.
Ferarri
,
R.
, and
Rudnick
,
D. L.
(
2000
). “
Thermohaline variability in the upper ocean
,”
J. Geophys. Res.
105
,
16857
16883
, doi:10.1029/2000JC900057.
9.
Flatté
,
S. M.
,
Dashen
,
R.
,
Munk
,
W.
,
Watson
,
K.
, and
Zachariasen
,
F.
(
1979
).
Sound Transmission Through a Fluctuating Ocean
(
Cambridge University Press
,
Cambridge, UK
),
295
pp.
10.
Fu
,
L.
(
1981
). “
Observations and models of inertial waves in the deep ocean
,”
Rev. Geophys.
19
(
1
),
141
170
, doi:.
11.
Garrett
,
C.
(
2001
). “
What is the ‘Near-Inertial’ band and why is it different from the rest of the internal wave spectrum?
,”
J. Phys. Oceanogr.
31
,
962
971
.
12.
Garrett
,
C.
, and
Munk
,
W.
(
1971
). “
Internal wave spectra in the presence of fine-structure
,”
J. Phys. Oceanogr.
1
,
196
202
.
13.
Kaneko
,
I.
,
Takatsuki
,
Y.
, and
Kamiya
,
H.
(
2001
). “
Circulation of intermediate and deep waters in the Philippine Sea
,”
J. Oceanogr.
57
,
397
420
.
14.
Kerry
,
C. G.
,
Powell
,
B. S.
, and
Carter
,
G. S.
(
2012
). “
Effects of remote generation sites on model estimates of M2 internal tides in the Philippine Sea
,”
J. Phys. Oceanogr.
43
,
187
204
.
17.
Levine
,
M. D.
(
2002
). “
A modification of the Garrett-Munk internal wave spectrum
,”
J. Phys. Oceanogr.
32
,
3166
3181
.
18.
Li
,
Q.
, and
Farmer
,
D. M.
(
2011
). “
The generation and evolution of nonlinear internal waves in the deep basin of the South China Sea
,”
J. Phys. Oceanogr.
41
,
1345
1363
.
19.
Merrifield
,
M. A.
, and
Holloway
,
P. E.
(
2002
). “
Model estimates of M2 internal tide energetics at the Hawaiian Ridge
,”
J. Geophys. Res.
107
,
1
12
, doi:.
20.
Müller
,
P.
, and
Liu
,
X.
(
2000
). “
Scattering of internal waves from finite topography in two dimensions. Part I: Theory and case studies
,”
J. Phys. Oceanogr.
30
,
532
549
.
21.
Munk
,
W.
(
1981
). “
Internal waves and small scale processes
” in
The Evolution of Physical Oceanography
, edited by
B.
Warren
and
C.
Wunsch
(
MIT
,
Cambridge, MA
), pp.
264
291
.
2.
Munk
,
W.
,
Worcester
,
P.
, and
Wunsch
,
C.
(
1995
).
Ocean Acoustic Tomography
, Chap. 6 (
Cambridge University Press
).
22.
Pedlosky
,
J.
(
1987
).
Geophysical Fluid Dynamics
(
Springer-Verlag
,
New York
), Chap. 6.
23.
Percival
,
D. B.
, and
Walden
,
A. T.
(
1993
).
Spectral Analysis for Physical Applications: Multitaper and Conventional Univariate Techniques
(
Cambridge University Press
,
Cambridge, UK
).
24.
Phillips
,
O. M.
(
1971
). “
On spectra measured in an undulating layered medium
,”
J. Phys. Oceanogr.
1
,
1
4
.
25.
Polzin
,
K. L.
, and
Lvov
,
Y. V.
(
2011
). “
Towards regional characterizations of the ocean internal wave field
,”
Rev. Geophys.
49
,
1
61
, doi:.
27.
Ramp
,
S. R.
,
Yang
,
Y. J.
, and
Bahr
,
F. L.
(
2010
). “
Characterizing the nonlinear internal wave climate in the northeastern South China Sea
,”
Nonlin. Processes Geophys.
17
,
481
498
.
28.
Rudnick
,
D. L.
,
Jan
,
S.
,
Centurioni
,
L.
,
Lee
,
C. M.
,
Lien
,
R. C.
,
Wang
,
J.
,
Lee
,
D. K.
,
Tseng
,
R. S.
,
Kim
,
Y. Y.
, and
Chern
,
C. S.
(
2011
). “
Seasonal and Mesoscale variability of the Kuroshio near its origin
,”
Oceanography
24
(
4
),
52
63
.
29.
Talley
,
D. L.
,
Pickard
,
G. L.
,
Emergy
,
W. J.
, and
Swift
,
J. H.
(
2011
).
Descriptive Physical Oceanography: An Introduction
, (
Elsevier
,
Boston, MA
), Chaps. 1 and 8.
30.
Thompson
,
D. J.
(
1982
). “
Spectrum estimation and harmonic analysis
,”
Proc. IEEE
70
,
1055
1096
.
31.
Todd
,
R. E.
,
Rudnick
,
D. L.
,
Mazloff
,
M. R.
,
Cornuelle
,
B. D.
, and
Davis
,
R. E.
(
2012
). “
Thermohaline structure in the California Current System: Observations and modeling of spice variance
,”
J. Geophys. Res.
117
,
2156
2202
, doi:.
32.
Wolfson
,
M. A.
, and
Tappert
,
F. D.
(
2000
). “
Study of horizontal multipath and ray chaos due to ocean mesoscale structure
,”
J. Acoust. Soc. Am.
107
(
1
),
154
162
.
15.
Worcester
,
P. F.
,
Dzieciuch
,
M. A.
,
Mercer
,
J. A.
,
Andrew
,
R. K.
,
Baggeroer
,
A. B.
,
Heaney
,
K. D.
,
D'Spain
,
G. J.
,
Colosi
,
J. A.
,
Stephen
,
R. A.
,
Kemp
,
J. N.
,
Howe
,
B. M.
, and
VanUffelen
,
L. J.
(
2013
). “
The North Pacific Acoustic Laboratory (NPAL) deep–water acoustic propagation experiments in the Philippine Sea
,”
J. Acoust. Soc. Am.
134
,
3359
3375
.
33.
Wunsch
,
C.
(
1997
). “
The vertical partition of oceanic horizontal kinetic energy
,”
J. Phys. Oceanogr.
27
,
1770
1794
.
34.
Zhang
,
Z.
,
Fringer
,
O. B.
, and
Ramp
,
S. R.
(
2011
). “
Three-dimensional, nonhydrostatic numerical simulation of nonlinear internal wave generation and propagation in the South China Sea
,”
J. Geophys. Res.
116
,
C05022
, doi:.
You do not currently have access to this content.