Second order mode statistics as a function of range and source depth are presented from the Long Range Ocean Acoustic Propagation EXperiment (LOAPEX). During LOAPEX, low frequency broadband signals were transmitted from a ship-suspended source to a mode-resolving vertical line array. Over a one-month period, the ship occupied seven stations from 50 km to 3200 km distance from the receiver. At each station broadband transmissions were performed at a near-axial depth of 800 m and an off-axial depth of 350 m. Center frequencies at these two depths were 75 Hz and 68 Hz, respectively. Estimates of observed mean mode energy, cross mode coherence, and temporal coherence are compared with predictions from modal transport theory, utilizing the Garrett–Munk internal wave spectrum. In estimating the acoustic observables, there were challenges including low signal to noise ratio, corrections for source motion, and small sample sizes. The experimental observations agree with theoretical predictions within experimental uncertainty.

1.
Andrew
,
R.
,
Zarnetske
,
M.
,
Howe
,
B.
, and
Mercer
,
J.
(
2010
). “
Ship-suspended acoustical transmitter position estimation and motion compensation
,”
IEEE. J. Ocean. Eng.
35
,
797
810
.
2.
Chandrayadula
,
T. K.
, and
Wage
,
K. E.
(
2008
). “
Interpolation methods for vertical linear array element localization
,” in
OCEANS
2008
, pp.
1
5
.
3.
Colosi
,
J. A.
, and
Brown
,
M. G.
(
1998
). “
Efficient numerical simulation of stochastic internal wave-induced sound-speed perturbation fields
,”
J. Acoust. Soc. Am.
103
,
2232
2235
.
4.
Colosi
,
J. A.
,
Chandrayadula
,
T. K.
,
Voronovich
,
A. G.
, and
Ostashev
,
V. E.
(
2013
). “
Coupled mode transport theory for sound transmission through an ocean with random sound speed perturbations: Coherence in deep water environments
,”
J. Acoust. Soc. Am.
134
,
3119
3133
.
5.
Colosi
,
J. A.
,
Duda
,
T. F.
, and
Morozov
,
A. K.
(
2012
). “
Statistics of low-frequency normal-mode amplitudes in an ocean with random sound-speed perturbations: Shallow-water environments
,”
J. Acoust. Soc. Am
131
,
1749
1761
.
6.
Colosi
,
J. A.
, and
Flatté
,
S. M.
(
1996
). “
Mode coupling by internal waves for multimegameter acoustic propagation in the ocean
,”
J. Acoust. Soc. Am
100
,
3607
3620
.
7.
Colosi
,
J. A.
, and
Morozov
,
A. K.
(
2009
). “
Statistics of normal mode amplitudes in an ocean with random sound-speed perturbations: Cross-mode coherence and mean intensity
,”
J. Acoust. Soc. Am
126
,
1026
1035
.
8.
Dozier
,
L.
, and
Tappert
,
F.
(
1978a
). “
Statistics of normal mode amplitudes in a random ocean. 1. Theory
,”
J. Acoust. Soc. Am.
63
,
353
365
.
9.
Dozier
,
L.
, and
Tappert
,
F.
(
1978b
). “
Statistics of normal mode amplitudes in a random ocean. 2. Computations
,”
J. Acoust. Soc. Am.
64
,
533
547
.
10.
Ewart
,
T. E.
(
1980
). “
A numerical simulation of the effects of oceanic finestructure on acoustic transmission
,”
J. Acoust. Soc. Am.
67
,
496
503
.
11.
Ewart
,
T. E.
,
Macaskill
,
C.
, and
Uscinski
,
B.
(
1983
). “
Intensity fluctuations. Part 2: Comparison with the Cobb Experiment
,”
J. Acoust. Soc. Am.
74
,
1484
1499
.
12.
Ferris
,
R. H.
(
1972
). “
Comparison of measured and calculated normal-mode amplitude functions for acoustic waves in shallow water
,”
J. Acoust. Soc. Am.
52
,
981
988
.
13.
Fisher
,
R. A.
(
1915
). “
Frequency distribution of the value of the correlation coefficient in samples from an indefinitely large population
,”
Biometrika
10
,
507
521
.
14.
Fisher
,
R. A.
(
1921
). “
On the ‘probable error’ of a coefficient of correlation deduced from a small sample
,”
Metron
1
,
1
32
.
15.
Fisher
,
R. A.
(
1990
).
Statistical Methods, Experimental Design, and Scientific Inference
(
Oxford University Press
,
New York, NY
), Chap. 6, pp.
177
212
.
16.
Flatté
,
S. M.
(
1983
). “
Wave propagation through random media: Contributions from Ocean Acoustics
,”
Proc. IEEE
71
,
1267
1294
.
17.
Garrett
,
C.
, and
Munk
,
W.
(
1972
). “
Space-time scales of internal waves
,”
Geophys. Fluid. Dyn.
2
,
225
264
.
18.
Garrett
,
C.
, and
Munk
,
W.
(
1975
). “
Space-time scales of internal waves: A progress report
,”
J. Geophys. Res
80
,
291
297
.
19.
Hotelling
,
H.
(
1953
). “
New light on the correlation coefficient and its transforms
,”
J. R. Stat. Soc. B
15
,
193
232
.
20.
Ingenito
,
F.
(
1973
). “
Measurements of mode attenuation coefficients in shallow water
,”
J. Acoust. Soc. Am.
53
,
858
863
.
21.
Jensen
,
F. B.
,
Kuperman
,
W. A.
,
Porter
,
M. B.
, and
Schmidt
,
H.
(
1994
).
Computational Ocean Acoustics
(
American Institute of Physics
,
Melville, NY
), Chap 5, pp.
281
295
.
22.
Levitus
,
S.
, and
Boyer
,
T.
(
1994
).
World Ocean Atlas 1994 Volume 4: Temperature
, NOAA Atlas NESDIS 4 (
NOAA
,
Washington, DC
).
23.
Levitus
,
S.
,
Burgett
,
R.
, and
Boyer
,
T.
(
1994
).
World Ocean Atlas 1994 Volume 3: Salinity
, NOAA Atlas NESDIS 3 (
NOAA
,
Washington, DC
).
24.
Mercer
,
J. A.
,
Colosi
,
J. A.
,
Howe
,
B. M.
,
Dzieciuch
,
M. A.
,
Stephen
,
R.
, and
Worcester
,
P. F.
(
2009
). “
LOAPEX: The Long-Range Ocean Acoustic Propagation EXperiment
,”
IEEE. J. Ocean. Eng.
34
,
1
11
.
25.
Munk
,
W. H.
,
Worcester
,
P. F.
, and
Wunsch
,
C.
(
1995
).
Ocean Acoustic Tomography
(
Cambridge University Press
,
New York, NY
), Chap. 5, pp.
183
197
, 218–221.
26.
Priestley
,
M. B.
(
1992
).
Spectral Analysis and Time Series
, Volume
1
(
Academic
,
San Diego, CA
), Chap. 5, pp.
318
320
, 330–337.
27.
Voronovich
,
A. G.
,
Ostashev
,
V. E.
, and
Colosi
,
J. A.
(
2011
). “
Temporal coherence of acoustic signals in a fluctuating ocean
,”
J. Acoust. Soc. Am.
129
,
3590
3597
.
28.
Wage
,
K. E.
(
2000
). “
Broadband modal coherence and beamforming at megameter ranges
,” Ph.D. thesis,
Massachusetts Institute of Technology/Woods Hole Oceanographic Institution
.
29.
Wage
,
K. E.
,
Baggeroer
,
A. B.
, and
Preisig
,
J. C.
(
2003
). “
Modal analysis of broadband acoustic receptions at 3515-km range in the North Pacific using short-time Fourier techniques
,”
J. Acoust. Soc. Am.
113
,
801
817
.
30.
Wage
,
K. E.
,
Dzieciuch
,
M. A.
,
Worcester
,
P. F.
,
Howe
,
B. M.
, and
Mercer
,
J. A.
(
2005
). “
Mode coherence at megameter ranges in the North Pacific Ocean
,”
J. Acoust. Soc. Am.
117
,
1565
1581
.
31.
Worcester
,
P. F.
,
Cornuelle
,
B. D.
,
Dzieciuch
,
M. A.
,
Munk
,
W. H.
,
Howe
,
B. M.
,
Mercer
,
J. A.
,
Spindel
,
R. C.
,
Colosi
,
J. A.
,
Metzger
,
K.
,
Birdsall
,
T. G.
, and
Baggeroer
,
A. B.
(
1999
). “
A test of basin-scale acoustic thermometry using a large-aperture vertical array at 3250-km range in the eastern North Pacific Ocean
,”
J. Acoust. Soc. Am.
105
,
3185
3201
.
32.
Worcester
,
P. F.
,
Howe
,
B. M.
,
Mercer
,
J. A.
,
Dzieciuch
,
M. A.
, and the Alternate Source Test (AST) Group (
2000
). “
A comparison of long-range acoustic propagation at ultra-low (28 Hz) and very-low (84 Hz) frequencies
,” in
Proceedings of the US–Russia Workshop on Experimental Underwater Acoustics
, edited by
V.
Talnov
(
Institute of Applied Physics, Russian Academy of Science
,
Nizhny Novgorod
), pp.
93
104
.
33.
Worcester
,
P. F.
, and
Spindel
,
R. C.
(
2005
). “
North Pacific Acoustic Laboratory
,”
J. Acoust. Soc. Am.
117
,
1499
1510
.
34.
Yang
,
T. C.
(
2008
). “
Temporal coherence of sound transmission in deep water revisited
,”
J. Acoust. Soc. Am.
124
,
113
127
.
You do not currently have access to this content.