Second moments of mode amplitudes at fixed frequency as a function of separations in mode number, time, and horizontal distance are investigated using mode-based transport equations and Monte Carlo simulation. These second moments are used to study full-field acoustic coherence, including depth separations. Calculations for low-order modes between 50 and 250 Hz are presented using a deep-water Philippine Sea environment. Comparisons between Monte Carlo simulations and transport theory for time and depth coherence at frequencies of 75 and 250 Hz and for ranges up to 500 km show good agreement. The theory is used to examine the accuracy of the adiabatic and quadratic lag approximations, and the range and frequency scaling of coherence. It is found that while temporal coherence has a dominant adiabatic component, horizontal and vertical coherence have more equal contributions from coupling and adiabatic effects. In addition, the quadratic lag approximation is shown to be most accurate at higher frequencies and longer ranges. Last the range and frequency scalings are found to be sensitive to the functional form of the exponential decay of coherence with lag, but temporal and horizontal coherence show scalings that fall quite close to the well-known inverse frequency and inverse square root range laws.

1.
Abramowitz
,
M.
, and
Stegun
,
I. A.
(
1972
).
Handbook of Mathemetical Functions
(
Dover
,
New York
), p.
487
.
2.
Beron-Vera
,
F. J.
,
Brown
,
M. G.
,
Colosi
,
J. A.
,
Virovlyansky
,
A. L.
,
Zaslavsky
,
G. M.
,
Tomsovic
,
S.
, and
Wolfson
,
M. A.
(
2003
). “
Ray dynamics in a long range acoustic propagation experiment
,”
J. Acoust. Soc. Am.
114
,
1226
1242
.
3.
Carey
,
W. M.
(
1998
). “
The determination of signal coherence length based on signal coherence and gain measurements in deep and shallow water
,”
J. Acoust. Soc. Am.
104
(
2
),
831
837
.
4.
Colosi
,
J. A.
(
1999
). “
A review of recent results on ocean acoustic wave propagation in random media: Basin scales
,”
IEEE J. Ocean. Eng.
24
(
2
),
138
155
.
5.
Colosi
,
J. A.
,
Baggeroer
,
A. B.
,
Cornuelle
,
B. D.
,
Dzieciuch
,
M. A.
,
Munk
,
W. H.
,
Worcester
,
P. F.
,
Dushaw
,
B. D.
,
Howe
,
B. M.
,
Mercer
,
J. A.
,
Spindel
,
R. C.
,
Birdsall
,
T. G.
,
Metzger
,
K.
, and
Forbes
,
A. M. G.
(
2005
). “
Analysis of multipath acoustic field variability and coherence in the finale of broadband basin-scale transmissions in the North Pacific Ocean
,”
J. Acoust. Soc. Am.
117
(
3
),
1538
1564
.
6.
Colosi
,
J. A.
, and
Brown
,
M. G.
(
1998
). “
Efficient numerical simulation of stochastic internal wave induced sound speed perturbation fields
,”
J. Acoust. Soc. Am.
103
,
2232
2235
.
7.
Colosi
,
J. A.
,
Duda
,
T. F.
, and
Morozov
,
A.
(
2011
). “
Statistics of low frequency normal mode amplitudes in an ocean with random sound speed perturbations: Shallow water environments
,”
J. Acoust. Soc. Am.
131
(
2
),
1749
1761
.
8.
Colosi
,
J. A.
, and
Flatté
,
S. M.
(
1996
). “
Mode coupling by internal waves for multimegameter acoustic propagation in the ocean
,”
J. Acoust. Soc. Am.
100
,
3607
3620
.
10.
Colosi
,
J. A.
, and
Morozov
,
A.
(
2009
). “
Statistics of normal mode amplitudes in an ocean with random sound speed perturbations: Cross mode coherence and mean intensity
,”
J. Acoust. Soc. Am.
126
(
3
),
1026
1035
.
12.
Colosi J.
,
A.
,
Scheer E.
,
K.
,
Flatté S.
,
M.
,
Cornuelle
,
B. D.
,
Dzieciuch M.
,
A.
,
Munk W.
,
H.
,
Worcester P.
,
F.
,
Howe B.
,
M.
,
Mercer J.
,
A.
,
Spindel R.
,
C.
,
Metzger
,
K.
,
Birdsall T.
,
G.
, and
Baggeroer A.
,
B.
(
1999
). “
Comparisons of measured and predicted acoustic fluctuations for a 3250-km propagation experiment in the eastern North Pacific Ocean
,”
J. Acoust. Soc. Am.
105
,
3202
3218
.
11.
Creamer
,
D. B.
(
1996
). “
Scintillating shallow water waveguides
,”
J. Acout. Soc. Am.
99
(
5
),
2825
2838
.
13.
Ewart
,
T. E.
, and
Reynolds
,
S.
(
1984
). “
The Mid-Ocean Acoustic Transmission Experiment, MATE
,”
J. Acoust. Soc. Am.
75
(
3
),
785
802
.
14.
Flatté
,
S. M.
(
1983a
). “
Wave propagation through random media: Contributions from ocean acoustics
,”
Proc. IEEE
71
,
1267
1294
.
15.
Flatté
,
S. M.
(
1983b
). “
Principles of ocean acoustic tomography of internal waves
,”
Proc. IEEE
372
377
.
16.
Flatté
,
S. M.
,
Dashen
,
R.
,
Munk
,
W.
,
Watson
,
K.
, and
Zachariasen
,
F.
(
1979
).
Sound Transmission Through a Fluctuating Ocean
(
Cambridge University Press
,
Cambridge, UK
), pp.
1
295
.
17.
Flatté
S. M.
, and
Rovner
,
G.
(
2000
). “
Calculation of internal-wave induced fluctuations in ocean acoustic propagation
,”
J. Acoust. Soc. Am.
108
(
2
),
526
534
.
18.
Flatté
,
S. M.
, and
Stoughton
,
R.
(
1988
). “
Predictions of internal wave effects on ocean acoustic coherence, travel time variance, and intensity moments for very long-range propagation
,”
J. Acoust. Soc. Am.
84
,
1414
1424
.
19.
Flatté
S. M.
, and
Vera
,
M.
(
2003
). “
Comparison between ocean-acoustic fluctuations in parabolic equation simulations and estimates from integral approximations
,”
J. Acoust. Soc. Am.
114
(
2
),
697
706
.
21.
Henyey
,
F.
, and
Macaskill
,
C.
(
1996
). “
Sound through the internal wave field
,” in
Stochastic Modeling in Physical Oceanography
(
Birkhauser Press
,
Boston
), pp.
141
184
.
22.
Kilfoyle
,
D.
, and
Baggeroer
,
A. B.
(
2000
). “
The state of the art in acoustic telemetry
,”
IEEE J. Ocean. Eng.
25
(
1
),
4
27
.
23.
Munk
,
W.
(
1981
). “
Internal waves and small scale processes
,” in
The Evolution of Physical Oceanography
, edited by
C.
Wunsch
and
B.
Warren
(
MIT
,
Cambridge
), pp.
264
291
.
24.
Munk
,
W. H.
,
Worcester
,
P.
, and
Wunsch
,
C.
(
1995
).
Ocean Acoustic Tomography
(
Cambridge University Press
,
Cambridge, UK
), pp.
1
424
.
25.
Urick
,
R. J.
(
1983
).
Principles of Underwater Sound
(
Peninsula Publishing
,
Los Altos, CA
), pp.
1
417
.
26.
Van Uffelen
,
L. J.
,
Worcester
,
P. F.
,
Dzieciuch
,
M. A.
, and
Rudnick
,
D.
(
2009
). “
The vertical structure of shadow-zone arrivals at long range in the ocean
,”
J. Acoust. Soc. Am.
125
(
6
),
3569
3588
.
27.
Voronovich
,
A. G.
, and
Ostashev
,
V. E.
(
2006
). “
Low frequency sound scattering by internal waves in the ocean
,”
J. Acoust. Soc. Am.
119
,
1406
1419
.
28.
Voronovich
,
A. G.
,
Ostashev
,
V. E.
, Colosi, J. A., Cornuelle, B. D., Dushaw, B. D., Dzieciuch, M. A., Howe, B. M., Mercer, J. A., Munk, W. H., Spindel, R. C., and Worcester, P. F. (
2005
). “
Horizontal refraction of acoustic signals retrieved from North Pacific Acoustic Laboratory billboard array data
,”
J. Acoust. Soc. Am.
117
(
3
),
1527
1537
.
29.
Voronovich
,
A. G.
,
Ostashev
,
V. E.
, and
Colosi
,
J. A.
(
2011
). “
Temporal coherence of acoustic signals in a fluctuating ocean
,”
J. Acoust. Soc. Am.
129
(
6
),
2590
2597
.
31.
Wage
,
K. E.
,
Dzieciuch
,
M. A.
,
Worcester
,
P. F.
,
Howe
,
B. M.
, and
Mercer
,
J. A.
(
2005
). “
Mode coherence at megameter ranges in the North Pacific Ocean
,”
J. Acout. Soc. Am.
117
(
3
),
1565
1581
.
33.
Yang
,
T. C.
(
2006
). “
Measurements of temporal coherence of sound transmissions through shallow water
,”
J. Acoust. Soc. Am.
120
(
5
),
2595
2614
.
34.
Yang
,
T. C.
(
2008
). “
Temporal coherence of sound transmissions in deep water revisited
,”
J. Acoust. Soc. Am.
124
(
1
),
113
127
.
You do not currently have access to this content.