Many marine mammals produce highly nonlinear frequency modulations. Determining the time-frequency support of these sounds offers various applications, which include recognition, localization, and density estimation. This study introduces a low parameterized automated spectrogram segmentation method that is based on a theoretical probabilistic framework. In the first step, the background noise in the spectrogram is fitted with a Chi-squared distribution and thresholded using a Neyman–Pearson approach. In the second step, the number of false detections in time-frequency regions is modeled as a binomial distribution, and then through a Neyman–Pearson strategy, the time-frequency bins are gathered into regions of interest. The proposed method is validated on real data of large sequences of whistles from common dolphins, collected in the Bay of Biscay (France). The proposed method is also compared with two alternative approaches: the first is smoothing and thresholding of the spectrogram; the second is thresholding of the spectrogram followed by the use of morphological operators to gather the time-frequency bins and to remove false positives. This method is shown to increase the probability of detection for the same probability of false alarms.

1.
Cato
,
D.
(
1978
). “
Marine biological choruses observed in tropical waters near Australia
,”
J. Acoust. Soc. Am.
64
,
736
743
.
2.
Datta
,
S.
, and
Sturtivant
,
C.
(
2002
). “
Dolphin whistle classification for determining group identities
,”
Signal Process.
82
,
127
327
.
3.
Ferguson
,
B.
, and
Cleary
,
J.
(
2001
). “
In situ source level and source position estimates of biological transient signals produced by snapping shrimp in an underwater environment
,”
J. Acoust. Soc. Am.
109
,
3031
3037
.
4.
Freitag
,
L. E.
, and
Tyack
,
P. L.
(
1993
). “
Passive acoustic localization of the Atlantic bottlenose dolphin using whistles and echolocation clicks
,”
J. Acoust. Soc. Am.
93
,
2197
2205
.
5.
Hlawatsch
,
F.
, and
Boudreaux-Bartels
,
G. F.
(
1992
). “
Linear and quadratic time-frequency signal representations
,”
Signal Process. Mag. IEEE
9
(
2
),
21
67
.
6.
Huillery
,
J.
(
2008
). “
Support temps-fréquence d'un signal en presence de bruit additif gaussien” (“Time-frequency support of a signal embedded in Gaussian additive noise”)
, Ph.D. thesis,
Institut polytechnique de Grenoble
, France, Chap. 3.
7.
Huillery
,
J.
,
Millioz
,
F.
, and
Martin
,
N.
(
2008
). “
On the description of spectrogram probabilities with a Chi-squared law
,”
IEEE Transact. Signal Process.
56
,
2249
2258
.
7.
Ioana
,
C.
,
Gervaise
,
C.
,
Stéphan
,
Y.
, and
Mars
,
J. I.
(
2010
). “
Analysis of underwater mammal vocalisations using time–frequency-phase tracker
,”
Appl. Acoust.
71
(
11
),
1070
1080
.
8.
Janik
,
V. M.
(
1999
). “
Pitfalls in the categorization of behaviour: A comparison of dolphin whistle classification methods
,”
Anim. Behav.
57
,
133
143
.
9.
Lampert
,
T. A.
, and
O'Keefe
,
S.
(
2010
). “
A survey of spectrogram track detection algorithms
,”
Appl. Acoust.
71
,
87
100
.
12.
Mallawaarachchi
,
A.
,
Ong
,
S. H.
,
Chitre
,
M.
, and
Taylor
,
E.
, (
2008
). “
Spectrogram denoising and automated extraction of the fundamental frequency variation of dolphin whistles
,”
J. Acoust. Soc. Am.
124
,
1159
1170
.
13.
Marques
,
T. A.
,
Thomas
,
L.
,
Ward
,
J.
,
DiMarzio
,
N.
, and
Tyack
,
P. L.
(
2009
). “
Estimating cetacean population density using fixed passive acoustic sensors: An example with Blainville's beaked whales
,”
J. Acoust. Soc. Am.
125
,
1982
1994
.
14.
Mellinger
,
D. K.
, and
Clark
,
C. W.
(
2000
). “
Recognizing transient low-frequency whale sounds by spectrogram correlation
,”
J. Acoust. Soc. Am.
107
,
3518
3529
.
15.
Mellinger
,
D. K.
,
Stafford
,
K. M.
,
Moore
,
S. E.
,
Dziak
,
R. P.
, and
Matsumoto
,
H.
(
2007
). “
An overview of fixed passive acoustic observation methods for cetaceans
,”
Oceanography
20
,
36
45
.
16.
National Research Council
(
2003
).
Ocean Noise and Marine Mammals
(
National Academies Press
,
Washington, DC
).
17.
Oswald
,
J. N.
,
Rankin
,
S.
,
Barlow
,
J.
, and
Lammers
,
M. O.
(
2007
). “
A tool for real-time acoustic species identification of delphinid whistles
,”
J. Acoust. Soc. Am.
122
,
587
595
.
18.
Radford
,
C.
,
Stanley
,
J.
,
Tindle
,
C.
,
Montgomery
,
J.
, and
Jeffs
,
A.
(
2010
). “
Localised coastal habitats have distinct underwater sound signatures
,”
Mar. Ecol. Prog. Ser.
401
,
21
29
.
20.
Roch
,
M. A.
,
Brandes
,
S. T.
,
Patel
,
B.
,
Barkley
,
Y.
,
Baumann-Pickering
,
S.
, and
Soldevilla
,
M. S.
(
2011
). “
Automated extraction of odontocete whistle contours
,”
J. Acoust. Soc. Am.
130
,
2212
2223
.
21.
Samaran
,
F.
,
Adam
,
O.
,
Motsch
,
J.
, and
Guinet
,
C.
(
2008
). “
Definition of the Antarctic and pygmy blue whale call templates. Application to fast automatic detection
,”
Can. Acoust.
36
,
93
102
.
22.
Serra
,
J.
(
1982
).
Image Analysis and Mathematical Morphology
(
Academic Press
,
London
), Vol.
1
.
23.
Simard
,
Y.
,
Roy
,
N.
,
Giard
,
S.
,
Gervaise
,
C.
,
Conversano
,
M.
, and
Menard
,
N.
(
2010
). “
Estimating whale density from their whistling activity: Example with St. Lawrence beluga
,”
Appl. Acoust.
71
,
1081
1086
.
You do not currently have access to this content.