Harbor porpoises may suffer hearing loss when exposed to intense sounds. After exposure to a 1.5 kHz continuous tone without harmonics at a mean received sound pressure level of 154 dB re 1 μPa for 60 min (cumulative sound exposure level: 190 dB re 1 μPa2 s), the temporary hearing threshold shift (TTS) of a porpoise was quantified at 1.5, 2, 4, 6.5, 8, 16, 32, 63, and 125 kHz with a psychoacoustic technique. Significant TTS only occurred at 1.5 and 2 kHz. Mean TTS (1–4 min after sound exposure stopped) was ∼14 dB at 1.5 kHz and ∼11 dB at 2 kHz, and recovery occurred within 96 min. Control hearing tests before and after a 60 min low ambient noise exposure showed that normal variation in TTS was limited (standard deviation: ±1.0 dB). Ecological effects of TTS depend not only on the magnitude of the TTS, its duration (depending on the exposure duration), and the recovery time after the exposure stopped, but also on the hearing frequency affected by the fatiguing noise. The hearing thresholds of harbor porpoises for the frequencies of their echolocation signals are not affected by intense low frequency sounds, therefore these sounds are unlikely to affect foraging efficiency.

1.
Carder
,
H. M.
, and
Miller
,
J. D.
(
1972
). “
Temporary threshold shifts from prolonged exposure to noise
,”
J. Speech Hear. Res.
15
,
603
623
.
2.
Cornsweet
,
T. N.
(
1962
). “
The staircase method in psychophysics
,”
J. Acoust. Soc. Am.
75
,
485
491
.
3.
Finneran
,
J. J.
,
Carder
,
D. A.
,
Schlundt
,
C. E.
, and
Ridgway
,
S. H.
(
2005
). “
Temporary threshold shift in bottlenose dolphins (Tursiops truncatus) exposed to mid-frequency tones
,”
J. Acoust. Soc. Am.
116
,
2696
2705
.
5.
Finneran
,
J. J.
, and
Schlundt
,
C. E.
(
2010
). “
Frequency-dependent and longitudinal changes in noise-inducted hearing loss in a bottlenose dolphin (Tursiops truncatus)
,”
J. Acoust. Soc. Am.
128
,
567
570
.
6.
Kamminga
,
C.
, and
Wiersma
,
H.
(
1981
). “
Investigations of Cetacean sonar II. Acoustical similarities and differences in odontocete sonar signals
,”
Aquat. Mamm.
8
,
41
62
.
7.
Kastak
,
D.
,
Southall
,
B. L.
,
Schusterman
,
R. J.
, and
Reichmuth Kastak
,
C.
(
2005
). “
Underwater temporary threshold shift in pinnipeds: Effects of noise level and duration
,”
J. Acoust. Soc. Am.
118
,
354
3163
.
8.
Kastelein
,
R. A.
,
Bunskoek
,
P.
,
Hagedoorn
,
M.
,
Au
,
W. W. L.
, and
de Haan
,
D.
(
2002
). “
Audiogram of a harbor porpoise (Phocoena phocoena) measured with narrow-band frequency-modulated signals
,”
J. Acoust. Soc. Am.
112
,
334
344
.
11.
Kastelein
,
R. A.
,
Gransier
,
R.
,
Hoek
,
L.
,
Macleod
,
A.
, and
Terhune
,
J. M.
(
2012a
). “
Hearing threshold shifts and recovery in harbor seals (Phoca vitulina) after octave-band noise exposure at 4 kHz
,”
J. Acoust. Soc. Am.
132
,
2745
2761
.
12.
Kastelein
,
R. A.
,
Gransier
,
R.
,
Hoek
,
L.
, and
Olthuis
,
J.
(
2012b
). “
Temporary threshold shifts and recovery in a harbor porpoise (Phocoena phocoena) after octave-band noise at 4 kHz
,”
J. Acoust. Soc. Am.
132
,
3525
3537
.
10.
Kastelein
,
R. A.
,
Hoek
,
L.
, and
de Jong
,
C. A. F.
(
2011
). “
Hearing thresholds of a harbor porpoise (Phocoena phocoena) for sweeps (1–2 kHz and 6–7 kHz bands) mimicking naval sonar signals
,”
J. Acoust. Soc. Am.
129
,
3393
3399
.
9.
Kastelein
,
R. A.
,
Hoek
,
L.
,
de Jong
,
C. A. F.
, and
Wensveen
,
P. J.
(
2010
). “
The effect of signal duration on the underwater detection thresholds of a harbor porpoise (Phocoena phocoena) for single frequency-modulated tonal signals between 0.25 and 160 kHz
,”
J. Acoust. Soc. Am.
128
,
3211
3222
.
13.
Kastelein
,
R. A.
,
Steen
,
N.
,
Gransier
,
R.
,
Wensveen
,
P. J.
, and
de Jong
,
C. A. F.
(
2012c
). “
Threshold received SPLs of single 1–2 kHz and 6–7 kHz up-sweeps and down-sweeps causing startle responses in a harbor porpoise (Phocoena phocoena)
,”
J. Acoust. Soc. Am.
131
,
2325
2333
.
13.
Kastelein R.
,
A.
,
Wensveen P.
,
J.
,
Hoek
,
L.
,
Au W.
,
W. L.
,
Terhune J.
,
M.
, and
de Jong C.
,
A. F.
(
2009
). “
Critical ratios in harbor porpoises (Phocoena phocoena) for tonal signals between 0.315 and 150 kHz in random Gaussian white noise
,”
J. Acoust. Soc. Am.
126
,
1588
1597
.
13.
Levitt
,
H.
(
1971
). “
Transformed up-down methods in psychoacoustics
,”
J. Acoust. Soc. Am.
49
,
467
477
.
15.
MacLeod
,
R.
,
MacLeod
,
C. D.
,
Learmonth
,
J. A.
,
Jepson
,
P. D.
,
Reid
,
R. J.
,
Deaville
,
R.
, and
Pierce
,
G. J.
(
2007
). “
Mass-dependent predation risk and lethal dolphin–porpoise interactions
,”
Proc. R. Soc. London, Ser. B
274
,
2587
2593
.
14.
Madsen
,
P. T.
(
2005
). “
Marine mammals and noise: Problems with root mean square sound pressure levels for transients
,”
J. Acoust. Soc. Am.
117
,
3952
3957
.
16.
Melnick
,
W.
(
1991
). “
Human temporary threshold shifts (TTS) and damage risk
,”
J. Acoust. Soc. Am.
90
,
147
154
.
17.
Mills
,
J. H.
,
Gilbert
,
R. M.
, and
Adkins
,
W. Y.
(
1979
). “
Temporary threshold shift in humans exposed to octave bands of noise for 16 to 24 hours
,”
J. Acoust. Soc. Am.
65
,
1238
1248
.
18.
Møhl
,
B.
, and
Andersen
,
S.
(
1973
). “
Echolocation: High-frequency component in the click of the harbour porpoise (Phocoena ph. L.)
,”
J. Acoust. Soc. Am.
53
,
1368
1372
.
19.
Mooney
,
T. A.
,
Nachtigall
,
P. E.
,
Breese
,
M.
,
Vlachos
,
M.
, and
Au
,
W. W. L.
(
2009
). “
Predicting temporary threshold shift in a bottlenose dolphin (Tursiops truncatus)
,”
J. Acoust. Soc. Am.
113
,
3425
3429
.
20.
Nachtigall
,
P. E.
,
Supin
,
A. Ya
,
Pawloski
,
J.
, and
Au
,
W. W. L.
(
2004
). “
Temporary threshold shifts after noise exposure in the bottlenose dolphin (Tursiops truncatus) measured using evoked auditory potentials
,”
Marine Mammal Sci.
20
,
673
687
.
21.
Popov
,
V. V.
,
Supin
,
A. Ya.
,
Wang
,
D.
,
Wang
,
K.
,
Dong
,
L.
, and
Wang
,
S.
(
2011
). “
Noise-induced temporary threshold shift and recovery in Yangtze finless porpoise Neophocaena phocaenoides asiaeorientalis
,”
J. Acoust. Soc. Am.
130
,
574
584
.
24.
Robinson D.
,
E.
, and
Watson C.
,
S.
(
1973
). “
Psychophysical methods in modern Psychoacoustics
,” in
Foundations of Modern Auditory Theory
, edited by
J. V.
Tobias
(
Academic
,
New York
), Vol.
2
, pp.
99
131
.
22.
Southall
,
B. L.
,
Bowles
,
A. E.
,
Ellison
,
W. T.
,
Finneran
,
J. J.
,
Gentry
,
R. L.
,
Greene
,
C. R.
, Jr.
,
Kastak
,
D.
,
Ketten
,
D. R.
,
Miller
,
J. H.
,
Nachtigall
,
P. E.
,
Richardson
,
W. J.
,
Thomas
,
J. A.
, and
Tyack
,
P. L.
(
2007
). “
Marine mammal noise exposure criteria: Initial scientific recommendations
,”
Aquat. Mamm.
33
,
411
521
.
23.
Vater
,
M.
, and
Kössl
,
M.
(
2011
). “
Comparative aspects of cochlear functional organization in mammals
,”
Hear. Res.
273
,
89
99
.
24.
Verboom
,
W. C.
, and
Kastelein
,
R. A.
(
2003
). “
Structure of harbour porpoise (Phocoena phocoena) acoustic signals with high repetition rates
,” in
Echolocation in Bats and Dolphins
, edited by
J. A.
Thomas
,
C.
Moss
, and
M.
Vater
(
University of Chicago Press
,
Chicago
), pp.
40
43
.
25.
Yost
,
W. A.
(
2007
).
Fundamentals of Hearing: An Introduction
(
Academic
,
New York
) p.
326
.
25.
Zar
,
J. H.
(
1999
).
Biostatistical Analysis
(
Prentice-Hall
,
Upper Saddle River, NJ
).
You do not currently have access to this content.