Dolphins are hypothesized to deduce the swimming direction of group members by attending to the spectral pattern of whistle harmonics. This is known as the direction of movement cue hypothesis and may facilitate coordination of complex group behavior when visibility is poor. The direction of movement cue hypothesis hinges on the assumption that dolphins can discriminate between whistles with different harmonic patterns that are associated with signaler orientation. This assumption was tested with a bottlenose dolphin. Whistles were recorded from a dolphin at different azimuth positions (0° to 180° in 45° increments). Noise-free, synthetic whistles were created to mimic the direction-dependant spectral profiles of the recorded whistles. A dolphin was then tested in its ability to discriminate between the synthetic whistles using fixed level and roving level conditions. The dolphin's discrimination performance in both the fixed and roving level conditions was near 100% for whistles separated by angles greater than 45°, and near chance for 45° separations. Computer simulations of the task, along with the dolphin's performance, suggest that the dolphin's discrimination was level invariant and based on the spectral pattern of the whistles.

You do not currently have access to this content.