Using an automated clarinet playing system, the frequency f, sound level L, and spectral characteristics are measured as functions of blowing pressure P and the force F applied by the mechanical lip at different places on the reed. The playing regime on the (P,F) plane lies below an extinction line F(P) with a negative slope of a few square centimeters and above a pressure threshold with a more negative slope. Lower values of F and P can produce squeaks. Over much of the playing regime, lines of equal frequency have negative slope. This is qualitatively consistent with passive reed behavior: Increasing F or P gradually closes the reed, reducing its equivalent acoustic compliance, which increases the frequency of the peaks of the parallel impedance of bore and reed. High P and low F produce the highest sound levels and stronger higher harmonics. At low P, sound level can be increased at constant frequency by increasing P while simultaneously decreasing F. At high P, where lines of equal f and of equal L are nearly parallel, this compensation is less effective. Applying F further from the mouthpiece tip moves the playing regime to higher F and P, as does a stiffer reed.

1.
Almeida
,
A.
,
Lemare
,
J.
,
Sheahan
,
M.
,
Judge
,
J.
,
Auvray
,
R.
,
Dang
,
K. S.
,
John
,
S.
,
Geoffoy
,
J.
,
Katupitiya
,
J.
,
Santus
,
P.
,
Skougarevsky
,
A.
,
Smith
,
J.
, and
Wolfe
,
J.
(
2010
). “
Clarinet parameter cartography: Automatic mapping of the sound produced as a function of blowing pressure and reed force
,” in
International Symposium on Music Acoustics
, edited by
J.
Smith
(
Curran Assoc
.,
New York
), pp.
201
206
.
2.
Almeida
,
A.
,
Vergez
,
C.
, and
Caussé
,
R.
(
2007
). “
Experimental investigation of reed instrument functioning through image analysis of reed opening
,”
Acta Acust. Acust.
93
(
4
),
645
658
.
3.
Bak
,
N.
, and
Domler
,
P.
(
1987
). “
The relation between blowing pressure and blowing frequency in clarinet playing
,”
Acustica
63
,
238
241
.
4.
Benade
,
A. H.
(
1976
).
Fundamentals of Musical Acoustics
(
Oxford University Press
,
New York
) p.
442
.
5.
Benade
,
A. H.
(
1985
). “
Air column, reed, and player's windway interaction in musical instruments
,” in
Vocal Fold Physiology, Biomechanics, Acoustics, and Phonatory Control
, edited by
I. R.
Titze
and
R. C.
Scherer
(
Denver Center for the Performing Arts
,
Denver, CO
), Chap. 35, pp.
425
452
.
6.
Brymer
,
J.
(
1976
).
Clarinet
(
Macmillan
,
New York
), p.
125
.
7.
Chen
,
J. M.
,
Smith
,
J.
, and
Wolfe
,
J.
(
2009
). “
Pitch bending and glissandi on the clarinet: Roles of the vocal tract and partial tone hole closure
,”
J. Acoust. Soc. Am.
126
,
1511
1520
.
8.
Chen
,
J. M.
,
Smith
,
J.
, and
Wolfe
,
J.
(
2011
). “
Saxophonists tune vocal tract resonances in advanced performance techniques
,”
J. Acoust. Soc. Am.
129
,
415
426
.
9.
Dalmont
,
J.-P.
, and
Frappé
,
C.
(
2007
). “
Oscillation and extinction thresholds of the clarinet: Comparison of analytical results and experiments
,”
J. Acoust. Soc. Am.
122
,
1173
1179
.
10.
Dalmont
,
J. P.
,
Gilbert
,
J.
,
Kergomard
,
J.
, and
Ollivier
,
S.
(
2005
). “
An analytical prediction of the oscillation and extinction thresholds of a clarinet
,”
J. Acoust. Soc. Am.
118
,
3294
3305
.
11.
Dalmont
,
J. P.
,
Gilbert
,
J.
, and
Ollivier
,
S.
(
2003
). “
Nonlinear characteristics of single-reed instruments: Quasistatic volume flow and reed opening measurements
,”
J. Acoust. Soc. Am.
114
,
2253
2262
.
12.
Dickens
,
P.
,
France
,
R.
,
Smith
,
J.
, and
Wolfe
,
J.
(
2007
). “
Clarinet acoustics: Introducing a compendium of impedance and sound spectra
,”
Acoust. Austr.
53
,
17
24
.
13.
Ganzengel
,
B.
,
Guimezanes
,
T.
,
Dalmont
,
J. P.
,
Doc
,
J. B.
,
Fagart
,
S.
, and
Léveillé
,
Y.
(
2007
). “
Experimental investigation of the influence of the mechanical characteristics of the lip on the vibrations of the single reed
,” in
International Symposium on Music Acoustics
,
Barcelona
,
Spain
.
14.
Gilbert
,
J.
,
Kergomard
,
J.
, and
Ngoya
,
E.
(
1989
). “
Calculation of the steady-state oscillations of a clarinet using the harmonic balance technique
,”
J. Acoust. Soc. Am.
86
,
35
41
.
15.
Gingras
,
M.
(
2004
).
Clarinet Secrets: 52 Performance Strategies for the Advanced Clarinetist
(
Scarecrow
,
Lanham, MD
), p.
30
.
16.
Grey
,
J. M.
, and
Gordon
,
J. W.
(
1978
). “
Perceptual effects of spectral modifications on musical timbres
,”
J. Acoust. Soc. Am.
63
,
1493
1500
.
17.
Idogawa
,
T.
,
Kobata
,
T.
,
Komuro
,
K.
, and
Iwaki
,
M.
(
1993
). “
Nonlinear vibrations in the air column of a clarinet artificially blown
,”
J. Acoust. Soc. Am.
93
,
540
551
.
18.
Mayer
,
A.
(
2003
). “
RIAM (reed instrument artificial mouth): A computer controlled excitation device for reed instruments
,” in Proceedings of the Stockholm Music Acoustics Conference, Vol.
1
, pp.
279
282
.
19.
Music Acoustics (
2008
). Information on the robot clarinet available at http://www.phys.unsw.edu.au/jw/clarinetrobot.html (Last viewed 6/21/2013).
20.
Nederveen
,
C. J.
(
1998
).
Acoustical Aspects of Woodwind Instruments
(
Northern Illinois University Press
,
DeKalb, IL
), p.
35
.
21.
Pay
,
A.
(
1995
). “
The mechanics of playing the clarinet
,” in
The Cambridge Companion to the Clarinet
, edited by
C.
Lawson
(
Cambridge University Press
,
London
), pp.
117
118
.
22.
Rehfeldt
,
P.
(
1977
).
New Directions for Clarinet
(
University of California Press
,
Berkeley, CA
), pp. 2,
58
.
23.
Schubert
,
E.
, and
Wolfe
,
J.
(
2006
). “
Does timbral brightness scale with frequency and spectral centroid?
Acustica
92
,
820
825
.
24.
Thurston
,
F.
(
1977
).
Clarinet Technique
(
Oxford University Press
,
London
), p.
4
.
25.
Wilson
,
T. A.
, and
Beavers
,
G. S.
(
1973
). “
Operating modes of the clarinet
,”
J. Acoust. Soc. Am.
56
,
653
658
.
You do not currently have access to this content.