Distributed underwater sensors are expected to provide oceanographic monitoring over large areas. As fabrication technology advances, low cost sensors will be available for many uses. The sensors communicate to each other and are networked using acoustic communications. This paper first studies the performance of such systems for current measurements using tomographic inversion approaches to compare with that of a conventional system which distributes the sensors on the periphery of the area of interest. It then proposes two simple signal processing methods for ocean current mapping (using distributed networked sensors) aimed at real-time in-buoy processing. Tomographic inversion generally requires solving a challenging high dimensional inverse problem, involving substantial computations. Given distributed sensors, currents can be constructed locally based on data from neighboring sensors. It is shown using simulated data that similar results are obtained using distributed processing as using conventional tomographic approaches. The advantage for distributed systems is that by increasing the number of nodes, one gains a much more improved performance. Furthermore, distributed systems use much less energy than a conventional tomographic system for the same area coverage. Experimental data from an acoustic communication and networking experiment are used to demonstrate the feasibility of acoustic current mapping.

1.
T. O. T.
Group
,
D.
Behringer
,
T.
Birdsall
,
M.
Brown
,
B.
Cornuelle
,
R.
Heinmiller
,
R.
Knox
,
K.
Metzger
,
W.
Munk
,
J.
Spiesberger
,
R.
Spindel
,
D.
Webb
,
P.
Worcester
, and
C.
Wunsch
, “
A demonstration of ocean acoustic tomography
,”
Nature
299
,
121
125
(
1982
).
2.
W.
Munk
,
P.
Worcester
, and
C.
Wunsch
,
Ocean Acoustic Tomography
(
Cambridge University Press
,
Cambridge
,
1995
), Chap. 3, pp. 116–135 and
233
234
.
3.
B.
Cornuelle
,
W.
Munk
, and
P.
Worcester
, “
Ocean acoustic tomography from ships
,”
J. Geophys. Res.
94
,
6232
6250
, doi: (
1989
).
4.
J.-H.
Park
and
A.
Kaneko
, “
Assimilation of coastal acoustic tomography data into a barotropic ocean model
,”
Geophys. Res. Lett.
27
,
3373
3376
, doi: (
2000
).
5.
P.
Elisseeff
,
H.
Schmidt
,
M.
Johnson
,
D.
Herold
,
N. R.
Chapman
, and
M. M.
McDonald
, “
Acoustic tomography of a coastal front in Haro Strait, British Columbia
,”
J. Acoust. Soc. Am.
106
,
169
184
(
1999
).
6.
K.
Yamaguchi
,
J.
Lin
,
A.
Kaneko
,
T.
Yayamoto
,
N.
Gohda
,
H.-Q.
Nguyen
, and
H.
Zheng
, “
A continuous mapping of tidal current structures in the Kanmon Strait
,”
J. Oceanogr.
61
,
283
294
(
2005
).
7.
X.-H.
Zhu
,
A.
Kaneko
,
Q.
Wu
,
C.
Zhang
,
N.
Taniguchi
, and
N.
Gohda
, “
Mapping tidal current structures in Zhitouyang Bay, China, using coastal acoustic tomography
,”
IEEE J. Ocean. Eng.
38
,
285
296
(
2013
).
8.
F.
Akyildiz
,
D.
Pompili
, and
T.
Melodia
, “
Underwater acoustic sensor networks: Research challenges
,” in
Ad Hoc Networks
(
Elsevier
,
New York
,
2005
), Vol.
3
, pp.
257
279
.
9.
M.
Stojanovic
, “
Capacity of a relay acoustic channel
,” in
OCEANS 2007
(
2007
), pp.
1
7
.
10.
P.-O.
Persson
and
G.
Strang
, “
A simple mesh generator in Matlab
,”
SIAM Rev.
46
,
329
345
(
2004
).
11.
P. M.
Shearer
,
Introduction to Seismology
(
Cambridge University Press
,
Cambridge
,
2009
), Chap. 5.
12.
M. A.
Ainslie
and
J. G.
McColm
, “
A simplified formula for viscous and chemical absorption in sea water
,”
J. Acoust. Soc. Am.
103
,
1671
1672
(
1998
).
13.
F.
Gaillard
, “
Evaluating the information content of tomographic data: Application to mesoscale observations
,”
J. Geophys. Res.
97
,
15489
15505
, doi: (
1992
).
14.
P. C.
Hansen
and
D. P.
O'Leary
, “
The use of the L-curve in the regularization of discrete ill-posed problems
,”
SIAM J. Sci. Comput. (USA)
14
,
1487
1503
(
1993
).
15.
L.-Y.
Chiao
and
B.-Y.
Kuo
, “
Multiscale seismic tomography
,”
Geophys. J. Int.
145
,
517
527
(
2001
).
16.
J.
Trampert
and
R.
Snieder
, “
Model estimations biased by truncated expansions: Possible artifacts in seismic tomography,”
Science
271
,
1257
1260
(
1996
).
17.
J. K.
Lewis
,
J.
Rudzinsky
,
S.
Rajan
,
P. J.
Stein
,
A.
Vandiver
, and
K.
Group
, “
Model-oriented ocean tomography using higher frequency, bottom-mounted hydrophones
,”
J. Acoust. Soc. Am.
117
,
3539
3554
(
2005
).
You do not currently have access to this content.