An acoustically driven air pocket trapped in a pit etched on a surface can emit a bubble cluster. When several pits are present, the resulting bubble clusters interact in a nontrivial way. Fernández Rivas et al. [Angew. Chem. Int. Ed. 49, 9699–9701 (2010)] observed three different behaviors at increasing driving power: clusters close to their “mother” pits, clusters attracting each other but still well separated, and merging clusters. The last is highly undesirable for technological purposes as it is associated with a reduction of the radical production and an enhancement of the erosion of the reactor walls. In this paper, the conditions for merging to occur are quantified in the case of two clusters, as a function of the following control parameters: driving pressure, distance between the two pits, cluster radius, and number of bubbles within each cluster. The underlying mechanism, governed by the secondary Bjerknes forces, is strongly influenced by the nonlinearity of the bubble oscillations and not directly by the number of nucleated bubbles. The Bjerknes forces are found to dampen the bubble oscillations, thus reducing the radical production. Therefore, the increased number of bubbles at high power could be the key to understanding the experimental observation that, above a certain power threshold, any further increase of the driving does not improve the sonochemical efficiency.

1.
K. S.
Suslick
, “
Sonochemistry
,”
Science
247
,
1439
1445
(
1990
).
2.
K. S.
Suslick
,
S. J.
Doktycz
, and
E. B.
Flint
, “
On the origin of sonoluminescence and sonochemistry
,”
Ultrasonics
28
,
280
290
(
1990
).
3.
K. S.
Suslick
and
G. J.
Price
, “
Applications of ultrasound to materials chemistry
,”
Ann. Rev. Mater. Sci.
29
,
295
326
(
1999
).
4.
Sonochemistry and Sonoluminescence
, edited by
L. A.
Crum
,
T. J.
Mason
,
J. L.
Reisse
, and
K. S.
Suslick
(
Kluwer Academic Publishers
,
Dordrecht
,
1999
), pp.
1
404
.
5.
T. J.
Mason
and
J. P.
Lorimer
,
Applied Sonochemistry, the Uses of Power Ultrasound in Chemistry and Processing
(
Wiley-VCH
,
Weinheim
,
2002
), pp.
1
303
.
6.
K. S.
Suslick
and
D. J.
Flannigan
, “
Inside a collapsing bubble: Sonoluminescence and the conditions during cavitation
,”
Ann. Rev. Phys. Chem.
59
,
659
683
(
2008
).
7.
H.
Cheung
,
A.
Bhatnagar
, and
G.
Jansen
, “
Sonochemical destruction of chlorinated hydrocarbons in diluted aqueous solutions
,”
Environ. Sci. Technol.
25
,
1510
1512
(
1991
).
8.
A.
Kotronarou
,
G.
Mills
, and
M. R.
Hoffmann
, “
Ultrasonic irradiation of para-nitrophenol in aqueous-solutions
,”
J. Phys. Chem.
95
,
3630
3638
(
1991
).
9.
A.
Kotronarou
,
G.
Mills
, and
M. R.
Hoffmann
, “
Decomposition of parathion in aqueous solution by ultrasonic irradiation
,”
Environ. Sci. Technol.
26
,
1460
1462
(
1992
).
10.
P. R.
Gogate
,
S.
Mujumdar
, and
A. B.
Pandit
, “
Sonochemical reactors for waste water treatment comparison using formic acid degradation as a model reaction
,”
Adv. Environ. Res.
7
,
283
299
(
2003
).
11.
V. G.
Yechmenev
,
E. J.
Blanchard
, and
A. H.
Lambert
, “
Study of the influence of ultrasound on enzymatic treatment of cotton fabric
,”
Text. Color. Chem. Am. Dyestuff Rep.
1
,
47
51
(
1999
).
12.
I. Z.
Shirgaonkar
,
R. R.
Lothe
, and
A. B.
Pandit
, “
Comments on the mechanism of microbial cell disruption in high pressure and high speed devices
,”
Biotechnol. Prog.
14
,
657
660
(
1998
).
13.
D.
Fernández Rivas
,
A.
Prosperetti
,
A. G.
Zijlstra
,
D.
Lohse
, and
H. J. G. E.
Gardeniers
, “
Efficient sonochemistry through microbubbles generated with micromachined surfaces
,”
Angew. Chem. Int. Ed.
49
,
9699
9701
(
2010
).
14.
D.
Fernández Rivas
,
L.
Stricker
,
A.
Zijlstra
,
H.
Gardeniers
,
D.
Lohse
, and
A.
Prosperetti
, “
Ultrasound artificially nucleated bubbles and their sonochemical radical production
,”
Ultrason. Sonochem.
20
,
510
524
(
2013
).
15.
N.
Bremond
,
M.
Arora
,
C. D.
Ohl
, and
D.
Lohse
, “
Controlled multibubble surface cavitation
,”
Phys. Rev. Lett.
96
,
224501
(
2006
).
16.
D.
Fernández Rivas
,
B.
Verhaagen
,
J. R. T.
Seddon
,
A. G.
Zijlstra
,
L.-M.
Jiang
,
L. W. M.
van der Sluis
,
M.
Versluis
,
D.
Lohse
, and
H. J. G. E.
Gardeniers
, “
Localized removal of layers of metal, polymer, or biomaterial by ultrasound cavitation bubbles
,”
Biomicrofluidics
6
,
034114
(
2012
).
17.
D.
Fernández Rivas
,
J.
Betjes
,
B.
Verhaagen
,
W.
Bouwhuis
,
T. C.
Bor
,
D.
Lohse
, and
H.
Gardeniers
, “
Erosion evolution in mono-crystalline silicon surfaces caused by acoustic cavitation bubbles
,”
J. Appl. Phys.
113
,
064902
(
2013
).
18.
V.
Bjerknes
,
Fields of Forces
(
Columbia University Press
,
New York
,
1906
), pp.
18
55
.
19.
T. G.
Leighton
,
The Acoustic Bubble
(
Academic Press
,
London
,
1994
), pp.
356
363
.
20.
F. G.
Blake
, “
Bjerknes forces in stationary sound fields
,”
J. Acoust. Soc. Am.
21
,
551
(
1949
).
21.
L. A.
Crum
, “
Bjerknes forces on bubbles in a stationary sound field
,”
J. Acoust. Soc. Am.
57
,
1363
1370
(
1975
).
22.
H. N.
Oğuz
and
A.
Prosperetti
, “
A generalization of the impulse and virial theorems with an application to bubble oscillations
,”
J. Fluid Mech.
218
,
143
162
(
1990
).
23.
N. A.
Pelekasis
and
J. A.
Tsamopoulos
, “
Bjerknes forces between two bubbles. Part 1. Response to a step change in pressure
,”
J. Fluid Mech.
254
,
467
499
(
1993
).
24.
N. A.
Pelekasis
and
J. A.
Tsamopoulos
, “
Bjerknes forces between two bubbles. Part 2. Response to an oscillatory pressure field
,”
J. Fluid Mech.
254
,
501
527
(
1993
).
25.
A. A.
Doinikov
, “
Bjerknes forces between two bubbles in a viscous fluid
,”
J. Acoust. Soc. Am.
106
,
3305
3312
(
1999
).
26.
A. A.
Doinikov
, “
Mathematical model for collective bubble dynamics in strong ultrasound fields
,”
J. Acoust. Soc. Am.
116
,
821
827
(
2004
).
27.
K.
Yasui
,
Y.
Iida
,
T.
Tuziuti
,
T.
Kozuka
, and
A.
Towata
, “
Strongly interacting bubbles under an ultrasonic horn
,”
Phys. Rev. E
77
,
016609
(
2008
).
28.
A.
Prosperetti
, “
Bubble phenomena in sound fields: Part two
,”
Ultrasonics
22
,
115
124
(
1984
).
29.
R.
Mettin
,
I.
Akhatov
,
U.
Parlitz
,
C. D.
Ohl
, and
W.
Lauterborn
, “
Bjerknes forces between small cavitation bubbles in a strong acoustic field
,”
Phys. Rev. E
56
,
2924
2931
(
1997
).
30.
A. A.
Doinikov
, “
Viscous effects on the interaction force between two small gas bubbles in a weak acoustic field
,”
J. Acoust. Soc. Am.
111
,
1602
1609
(
2002
).
31.
A. A.
Doinikov
, “
Translational motion of two interacting bubbles in a strong acoustic field
,”
Phys. Rev. E
64
,
026301
(
2001
).
32.
A.
Harkin
,
T. J.
Kaper
, and
A.
Nadim
, “
Coupled pulsation and translation of two gas bubbles in a liquid
,”
J. Fluid Mech.
445
,
377
411
(
2001
).
33.
N. A.
Pelekasis
,
A.
Gaki
,
A.
Doinikov
, and
J. A.
Tsamopoulos
, “
Secondary Bjerknes forces between two bubbles and the phenomenon of acoustic streamers
,”
J. Fluid Mech.
500
,
313
347
(
2004
).
34.
K.
Yoshida
,
T.
Fujikawa
, and
Y.
Watanabe
, “
Experimental investigation on reversal of secondary Bjerknes force between two bubbles in ultrasonic standing wave
,”
J. Acoust. Soc. Am.
130
,
135
144
(
2011
).
35.
R.
Toegel
,
S.
Hilgenfeldt
, and
D.
Lohse
, “
The effect of surfactants on single bubble sonoluminescence
,”
Phys. Rev. Lett.
84
,
2509
2512
(
2000
).
36.
R.
Toegel
,
S.
Hilgenfeldt
, and
D.
Lohse
, “
Suppressing dissociation in sonoluminescing bubbles: The effect of excluded volume
,”
Phys. Rev. Lett.
88
,
034301
(
2002
).
37.
R.
Toegel
and
D.
Lohse
, “
Phase diagrams for sonoluminescing bubbles: A comparison between experiment and theory
,”
J. Chem. Phys.
118
,
1863
1875
(
2003
).
38.
L.
Stricker
,
A.
Prosperetti
, and
D.
Lohse
, “
Validation of an approximate model for the thermal behavior in acoustically driven bubbles
,”
J. Acoust. Soc. Am.
130
,
3243
3251
(
2011
).
39.
Z.
Zeravcic
,
D.
Lohse
, and
W.
van Saarloos
, “
Collective oscillations in bubble clouds
,”
J. Fluid Mech.
680
,
114
149
(
2011
).
40.
H.
Gelderblom
,
A. G.
Zijlstra
,
L.
van Wijngaarden
, and
A.
Prosperetti
, “
Oscillations of a gas pocket on a liquid-covered solid surface
,”
Phys. Fluids
24
,
122101
(
2012
).
41.
L.
Stricker
, “
Acoustic cavitation and sonochemistry
,” Ph.D. thesis,
University of Twente
(
2012
), pp.
135
166
.
42.
A.
Prosperetti
, “
Bubble phenomena in sound fields: part one
,”
Ultrasonics
22
,
69
77
(
1984
).
43.
A.
Zijlstra
, “
Acoustic surface cavitation
,” Ph.D. thesis,
University of Twente, Enschede, The Netherlands
(
2011
), pp.
76
78
.
44.
M. S.
Plesset
, “
Comment on ‘Sonoluminescence from water containing dissolved gases’ [J. Acoust. Soc. Am. 60, 100–103 (1976)]
,”
J. Acoust. Soc. Am.
62
,
470
(
1977
).
45.
M. S.
Plesset
and
A.
Prosperetti
, “
Bubble dynamics and cavitation
,”
Annu. Rev. Fluid Mech.
9
,
145
185
(
1977
).
You do not currently have access to this content.