Extracorporeal shock wave therapy (ESWT) uses acoustic pulses to treat certain musculoskeletal disorders. In this paper the acoustic field of a clinical portable ESWT device (Duolith SD1) was characterized. Field mapping was performed in water for two different standoffs of the electromagnetic head (15 or 30 mm) using a fiber optic probe hydrophone. Peak positive pressures at the focus ranged from 2 to 45 MPa, while peak negative pressures ranged from −2 to −11 MPa. Pulse rise times ranged from 8 to 500 ns; shock formation did not occur for any machine settings. The maximum standard deviation in peak pressure at the focus was 1.2%, indicating that the Duolith SD1 generates stable pulses. The results compare qualitatively, but not quantitatively with manufacturer specifications. Simulations were carried out for the short standoff by matching a Khokhlov-Zabolotskaya-Kuznetzov equation to the measured field at a plane near the source, and then propagating the wave outward. The results of modeling agree well with experimental data. The model was used to analyze the spatial structure of the peak pressures. Predictions from the model suggest that a true shock wave could be obtained in water if the initial pressure output of the device were doubled.

1.
P.
Kudo
,
K.
Dainty
,
M.
Clarfield
,
L.
Coughlin
,
P.
Lavoie
, and
C.
Lebrun
, “
Randomized, placebo-controlled, double-blind clinical trial evaluating the treatment of plantar fasciitis with an extracoporeal shock wave therapy (ESWT) device: a North American confirmatory study
,”
J. Orthop. Res.
24
,
115
123
(
2006
).
2.
J. D.
Rompe
,
J.
Decking
,
C.
Schoellner
, and
B.
Nafe
, “
Shock wave application for chronic plantar fasciitis in running athletes: a prospective, randomized, placebo-controlled trial
,”
Am. J. Sports Med.
31
,
268
275
(
2003
).
3.
L.
Gerdesmeyer
,
S.
Wagenpfeil
,
M.
Haake
,
M.
Maier
,
M.
Loew
,
K.
Wörtler
,
R.
Lampe
,
R.
Seil
,
G.
Handle
,
S.
Gassel
, and
J. D.
Rompe
, “
Extracorporeal shock wave therapy for the treatment of chronic calcifying tendonitis of the rotator cuff: a randomized controlled trial
,”
JAMA-J. Am. Med. Assoc.
290
,
2573
2580
(
2003
).
4.
J. P.
Furia
, “
Safety and efficacy of extracorporeal shock wave therapy for chronic lateral epicondylitis
,”
Am. J. Orthop. (Belle Mead, NJ).
34
,
13
19
(
2005
).
5.
J. D.
Rompe
, “
Repetitive low-energy shock wave treatment for chronic lateral epicondylitis in tennis players
,”
Am. J. Sports Med.
32
,
734
743
(
2004
).
6.
K.
Peers
,
Extracorporeal Shock Wave Therapy in Chronic Achilles and Patellar Tendinopathy
(
Leuven University Press
,
Leuven (Belgium)
,
2003
), pp.
61
75
.
7.
S. D.
Yoo
,
S.
Choi
,
G.-J.
Lee
,
J.
Chon
,
Y. S.
Jeong
,
H.-K.
Park
, and
H.-S.
Kim
, “
Effects of extracorporeal shock wave therapy on nanostructural and biomechanical responses in the collagenase-induced Achilles tendinitis animal model
,”
Laser. Med. Sci.
27
,
1195
1204
(
2012
).
8.
V. D.
Valchanou
and
P.
Michailov
, “
High energy shock waves in the treatment of delayed and nonunion of fractures
,”
Int. Orthop.
15
,
181
184
(
1991
).
9.
C.-J.
Wang
,
F.-S.
Wang
,
K. D.
Yang
,
L.-H.
Weng
,
C.-C.
Hsu
,
C.-S.
Huang
, and
L.-C.
Yang
, “
Shock wave therapy induces neovascularization at the tendon-bone junction. A study in rabbits
,”
J. Orthop. Res.
21
,
984
989
(
2003
).
10.
R.
Meirer
,
G. M.
Huemer
,
M.
Oehlbauer
,
S.
Wanner
,
H.
Piza-Katzer
, and
F. S.
Kamelger
, “
Comparison of the effectiveness of gene therapy with vascular endothelial growth factor or shock wave therapy to reduce ischaemic necrosis in an epigastric skin flap model in rats
,”
J. Plast. Reconstr. Aesthet. Surg.
60
,
266
271
(
2007
).
11.
R.
Meirer
,
A.
Brunner
,
M.
Deibl
,
M.
Oehlbauer
,
H.
Piza-katzer
, and
F. S.
Kamelger
, “
Shock wave therapy reduces necrotic flap zones and induces vegf expression in animal epigastric skin flap model
,”
J. Reconstr. Microsurg.
23
,
231
235
(
2007
).
12.
C.-J.
Wang
,
Y.-C.
Sun
,
T.
Wong
,
S.-L.
Hsu
,
W.-Y.
Chou
, and
H.-W.
Chang
, “
Extracorporeal shock wave therapy shows time-dependent chondroprotective effects in osteoarthritis of the knee in rats
,”
J. Surg. Res.
178
,
196
205
(
2012
).
13.
C.-J.
Wang
, “
Extracorporeal shock wave therapy in musculoskeletal disorders
,”
J. Orthop. Surg. Res.
7
,
11
(
2012
).
14.
C.-J.
Wang
, “
An overview of shock wave therapy in musculoskeletal disorders
,”
Chang Gung Med. J.
26
,
220
232
(
2003
).
15.
S.
Mariotto
,
E.
Cavalieri
,
E.
Amelio
,
A. R.
Ciampa
,
A. C.
de Prati
,
E.
Marlinghaus
,
S.
Russo
, and
H.
Suzuki
, “
Extracorporeal shock waves: from lithotripsy to anti-inflammatory action by NO production
,”
Nitric. Oxide-Biol. Ch.
12
,
89
96
(
2005
).
16.
K.
Ito
,
Y.
Fukumoto
, and
H.
Shimokawa
, “
Extracorporeal shock wave therapy as a new and non-invasive angiogenic strategy
,”
Tohoku. J. Exp. Med.
219
,
1
9
(
2009
).
17.
A.
Notarnicola
,
L.
Moretti
,
S.
Tafuri
,
S.
Gigliotti
,
S.
Russo
,
L.
Musci
, and
B.
Moretti
, “
Extracorporeal shock waves versus surgery in the treatment of pseudoarthrosis of the carpal scaphoid
,”
Ultrasound Med. Biol.
36
,
1306
1313
(
2010
).
18.
A. J.
Coleman
and
J. E.
Saunders
, “
A survey of the acoustic output of comercial extracorporeal shock wave lithotripters
,”
Ultrasound Med. Biol.
15
,
213
227
(
1989
).
19.
A.
Buizza
,
T.
Dell'Aquila
,
P.
Giribona
, and
C.
Spagno
, “
The performance of different pressure pulse generators for extracorporeal lithotripsy: A comparison based on commercial lithotripters for kidney stones
,”
Ultrasound Med. Biol.
21
,
259
272
(
1995
).
20.
R. O.
Cleveland
,
M. R.
Bailey
,
N.
Fineberg
,
B.
Hartenbaum
,
M.
Lokhandwalla
,
J. A.
McAteer
, and
B.
Sturtevant
, “
Design and characterization of a research electrohydraulic lithotripter patterned after the Dornier HM3
,”
Rev. Sci. Instrum.
71
,
2514
2525
(
2000
).
21.
P. V.
Chitnis
and
R. O.
Cleveland
, “
Acoustic and cavitation fields of shock wave therapy devices
,” AIP Conference Proceedings (American Institute of Physics, New York,
2006
), pp.
440
444
.
22.
R. O.
Cleveland
,
P. V.
Chitnis
, and
S. R.
McClure
, “
Acoustic field of a ballistic shock wave therapy device
,”
Ultrasound Med. Biol.
33
,
1327
1335
(
2007
).
23.
R. O.
Cleveland
and
J. A.
McAteer
,
Physics of Shock wave Lithotripsy in Smith's Textbook of Endourology
(
Wiley-Blackwell
,
2012
), pp.
317
332
.
24.
H.
Gollwitzer
,
P.
Diehl
,
A.
von Korff
,
V. W.
Rahlfs
, and
L.
Gerdesmeyer
, “
Extracorporeal shock wave therapy for chronic painful heel syndrome: a prospective, double blind, randomized trial assessing the efficacy of a new electromagnetic shock wave device
,”
J. Foot. Ankle. Surg.
46
,
348
357
(
2000
).
25.
P.
Müller
,
B.
Guggenheim
,
T.
Attin
,
E.
Marlinghaus
, and
P. R.
Schmidlin
, “
Potential of shock waves to remove calculus and biofilm
,”
Clin. Oral. Investig.
15
,
959
965
(
2011
).
26.
E.
Tinazzi
,
E.
Amelio
,
E.
Marangoni
,
C.
Guerra
,
A.
Puccetti
,
O. M.
Codella
,
S.
Simeoni
,
E.
Cavalieri
,
M.
Montagnana
,
R.
Adani
,
R.
Corrocher
, and
C.
Lunardi
, “
Effects of shock wave therapy in the skin of patients with progressive systemic sclerosis: a pilot study
,”
Rheumatol. Int.
31
,
651
656
(
2011
).
27.
R.
Zimmermann
,
A.
Cumpanas
,
L.
Hoeltl
,
G.
Janetschek
,
A.
Stenzl
, and
F.
Miclea
, “
Extracorporeal shock-wave therapy for treating chronic pelvic pain syndrome: a feasibility study and the first clinical results
,”
BJU Int.
102
,
976
980
(
2008
).
28.
H.
van der Worp
,
J.
Zwerver
,
I.
van den Akker-Scheek
, and
R. L.
Diercks
, “
The TOPSHOCK study: Effectiveness of radial shock wave therapy compared to focused shock wave therapy for treating patellar tendinopathy – design of a randomised controlled trial
,”
BMC Musculoskelet. Disord.
12
,
229
234
(
2011
).
29.
U.
Lauer
,
E.
Bürgelt
,
Z.
Squire
,
K.
Messmer
,
P. H.
Hofschneider
,
M.
Gregor
, and
M.
Delius
, “
Shock wave permeabilization as a new gene transfer method
,”
Gene. Ther.
4
,
710
715
(
1997
).
30.
S.
Bao
,
B. D.
Thrall
,
R. A.
Gies
, and
D. L.
Miller
, “
In vivo transfection of melanoma cells by lithotripter shock waves
,”
Cancer. Res.
58
,
219
221
(
1998
).
31.
J. D.
Rompe
,
T.
Rosendahl
,
C.
Schöllner
, and
C.
Theis
, “
High-energy extracorporeal shock wave treatment of nonunions
,”
Clin. Orthop. Relat. Res.
387
,
102
111
(
2001
).
32.
C.
Schoellner
,
J. D.
Rompe
,
J.
Decking
, and
J.
Heine
, “
High energy extracorporeal shock wave therapy (ESWT) in pseudarthrosis
,”
Der Orthopäde
31
,
658
662
(
2002
).
33.
J.
Ludwig
,
S.
Lauber
,
H. J.
Lauber
,
U.
Dreisilker
,
R.
Raedel
, and
H.
Hotzinger
, “
High-energy shock wave treatment of femoral head necrosis in adults
,”
Clin. Orthop. Relat. Res.
387
,
119
126
(
2001
).
34.
J.
Vogel
,
J. D.
Rompe
,
C.
Hopf
,
J.
Heine
, and
R.
Bürger
, “
High-energy extracorporeal shock-wave therapy (ESWT) in the treatment of pseudarthrosis
,”
Z Orthop Ihre Grenzgeb
135
,
145
149
(
1997
).
35.
S.
Endres
,
M.
Weiskirch
,
C.
Hinz
,
F.
Hütter
, and
A.
Wilke
, “
Extracorporeal shock-wave therapy in the treatment of pseudoarthrosis: a case report
,”
Cases. J.
1
,
276
(
2008
).
36.
R.
Zimmermann
,
A.
Cumpanas
,
F.
Miclea
, and
G.
Janetschek
, “
Extracorporeal shock wave therapy for the treatment of chronic pelvic pain syndrome in males: a randomised, double-blind, placebo-controlled study
,”
Eur. Urol.
56
,
418
424
(
2009
).
37.
A.
Palmieri
,
C.
Imbimbo
,
N.
Longo
,
F.
Fusco
,
P.
Verze
,
F.
Mangiapia
,
M.
Creta
, and
V.
Mirone
, “
A first prospective, randomized, double-blind, placebo-controlled clinical trial evaluating extracorporeal shock wave therapy for the treatment of Peyronie's disease
,”
Eur. Urol.
56
,
363
369
(
2009
).
38.
M. H.
Moen
,
S.
Rayer
,
M.
Schipper
,
S.
Schmikli
,
A.
Weir
,
J. L.
Tol
, and
F. J. G.
Backx
, “
Shock wave treatment for medial tibial stress syndrome in athletes; a prospective controlled study
,”
Br. J. Sports. Med.
46
,
253
257
(
2012
).
39.
W.
Kreider
,
O.
Sapozhnikov
,
V.
Khokhlova
,
N.
Farr
,
M.
Bailey
,
P.
Kaczkowski
,
A.
Partanen
, and
D.
Brazzle
, “
Acoustic measurements and holographic reconstruction of the Philips MR-guided HIFU source
,” in
Program and Abstract Book “Current and Future Applications of MR-guided Focused Ultrasound 2010,” 2nd International Symposium
, 17–20 October 2010, Washington, D.C. (
2010
), p.
79
.
40.
V. A.
Khokhlova
,
A. E.
Ponomarev
,
M. A.
Averkiou
, and
L. A.
Crum
, “
Nonlinear pulsed ultrasound beams radiated by rectangular focused diagnostic transducers
,”
Acoust. Phys.
52
,
481
489
(
2006
).
41.
V. A.
Khokhlova
,
R.
Souchon
,
J.
Tavakkoli
,
O. A.
Sapozhnikov
, and
D.
Cathignol
, “
Numerical modeling of finite-amplitude sound beams: Shock formation in the near field of a cw plane piston source
,”
J. Acoust. Soc. Am.
110
,
95
108
(
2001
).
42.
M. A.
Averkiou
and
R. O.
Cleveland
, “
Modeling of an electrohydraulic lithotripter with the KZK equation
,”
J. Acoust. Soc. Am.
106
,
102
112
(
1999
).
43.
M. S.
Canney
,
M. R.
Bailey
,
L. A.
Crum
,
V. A.
Khokhlova
, and
O. A.
Sapozhnikov
, “
Acoustic characterization of high intensity focused ultrasound fields: a combined measurement and modeling approach
,”
J. Acoust. Soc. Am.
124
,
2406
2420
(
2008
).
44.
W.
Eisenmenger
and
J.
Staudenraus
, “
Fibre-optic probe hydrophone for ultrasonic and shock-wave measurements in water
,”
Ultrasonics
31
,
267
273
(
1993
).
45.
IEC61846, IEC 61846 Ultrasonics-Pressure pulse lithotriptors-Characteristics of fields, International Electrotechnical Commission, Geneva, Switzerland (
1998
).
46.
M.
Averiyanov
,
S.
Ollivier
,
V.
Khokhlova
, and
P.
Blanc-Benon
, “
Random focusing of nonlinear acoustic N-waves in fully developed turbulence: laboratory scale experiment
,”
J. Acoust. Soc. Am.
130
,
3595
3607
(
2011
).
47.
P.
Yuldashev
,
S.
Ollivier
,
M.
Averiyanov
,
O.
Sapozhnikov
,
V.
Khokhlova
, and
P.
Blanc-Benon
, “
Nonlinear propagation of spark-generated N-waves in air: modeling and measurements using acoustical and optical methods
,”
J. Acoust. Soc. Am.
128
,
3321
3333
(
2010
).
48.
M. F.
Hamilton
and
D. T.
Blackstock
,
Nonlinear Acoustics
(
Academic
,
San Diego
,
1998
), pp.
117
131
.
49.
A.
Kurganov
and
E.
Tadmor
, “
New high-resolution central schemes for nonlinear conservation laws and convection–diffusion equations
,”
J. Comput. Phys.
160
,
241
282
(
2000
).
50.
M. M.
Karzova
,
M. V.
Averiyanov
,
O. A.
Sapozhnikov
, and
V. A.
Khokhlova
, “
Mechanisms for saturation of nonlinear pulsed and periodic signals in focused acoustic beams
,”
Acoust. Phys.
58
,
81
89
(
2012
).
51.
M.
Averiyanov
,
P.
Blanc-Benon
,
R. O.
Cleveland
, and
V.
Khokhlova
, “
Nonlinear and diffraction effects in propagation of N-waves in randomly inhomogeneous moving media
,”
J. Acoust. Soc. Am.
129
,
1760
1772
(
2011
).
52.
O. V.
Bessonova
,
V. A.
Khokhlova
,
M. R.
Bailey
,
M. S.
Canney
, and
L. A.
Crum
, “
Focusing of high power ultrasound beams and limiting values of shock wave parameters
,”
Acoust. Phys.
55
,
463
476
(
2009
).
53.
M.
Lokhandwalla
,
J. A.
McAteer
,
J. C.
Williams
, and
B.
Sturtevant
, “
Mechanical haemolysis in shock wave lithotripsy (SWL): II. In vitro cell lysis due to shear.
,”
Phys. Med. Bio.
46
,
1245
1264
(
2001
).
54.
M.
Lokhandwalla
and
B.
Sturtevant
, “
Mechanical haemolysis in shock wave lithotripsy (SWL): I. Analysis of cell deformation due to SWL flow-fields.
,”
Phys. Med. Bio.
46
,
413
437
(
2001
).
55.
N.
Wang
,
J. D.
Tytell
, and
D. E.
Ingber
, “
Mechanotransduction at a distance: mechanically coupling the extracellular matrix with the nucleus.
,”
Nat. Rev. Mol. Cell. Biol.
10
,
75
82
(
2009
).
56.
K. M.
Fagnan
,
R. J.
Leveque
,
T. J.
Matula
, and
B.
MacConaghy
, “
High-resolution finite volume methods for extracorporeal shock wave therapy
,” in
Hyperbolic Problems: Theory, Numerics, Applications
, edited by
S.
Benzoni-Gavage
, and
D.
Serre
(
Springer
,
Berlin
,
2008
), pp.
503
510
.
57.
T. J.
Matula
,
B.
MacConaghy
,
R.
Ching
,
K.
Fagnan
, and
R. J.
LeVeque
, “
Measurements of acoustic energy deflection in the presence of replica bone
,”
ISMST Newsletter
6
,
20
22
(
2010
).
You do not currently have access to this content.