A heuristic model is presented to describe the overall progression of stone comminution in shock wave lithotripsy (SWL), accounting for the effects of shock wave dose and the average peak pressure, P+(avg), incident on the stone during the treatment. The model is developed through adaptation of the Weibull theory for brittle fracture, incorporating threshold values in dose and P+(avg) that are required to initiate fragmentation. The model is validated against experimental data of stone comminution from two stone types (hard and soft BegoStone) obtained at various positions in lithotripter fields produced by two shock wave sources of different beam width and pulse profile both in water and in 1,3-butanediol (which suppresses cavitation). Subsequently, the model is used to assess the performance of a newly developed acoustic lens for electromagnetic lithotripters in comparison with its original counterpart both under static and simulated respiratory motion. The results have demonstrated the predictive value of this heuristic model in elucidating the physical basis for improved performance of the new lens. The model also provides a rationale for the selection of SWL treatment protocols to achieve effective stone comminution without elevating the risk of tissue injury.

1.
Bierkens
,
A. F.
,
Hendrikx
,
A. J.
,
de Kort
,
V. J.
,
de Reyke
,
T.
,
Bruynen
,
C. A.
,
Bouve
,
E. R.
,
Beek
,
T. V.
,
Vos
,
P.
, and
Berkel
,
H. V.
(
1992
). “
Efficacy of second generation lithotriptors: a multicenter comparative study of 2,206 extracorporeal shock wave lithotripsy treatments with the Siemens Lithostar, Dornier HM4, Wolf Piezolith 2300, Direx Tripter X-1 and Breakstone lithotriptors
,”
J. Urol.
148
:
1052
1056
, discussion 1056–1057.
2.
Bromage
,
P. R.
,
Bonsu
,
A. K.
,
el-Faqih
,
S. R.
, and
Husain
,
I.
(
1989
). “
Influence of Dornier HM3 system on respiration during extracorporeal shock-wave lithotripsy
,”
Anesth. Analg.
68
,
363
367
.
3.
Chang
,
C. C.
,
Liang
,
S. M.
,
Pu
,
Y. R.
,
Chen
,
C. H.
,
Manousakas
,
I.
,
Chen
,
T. S.
,
Kuo
,
C. L.
,
Yu
,
F. M.
, and
Chu
,
Z. F.
(
2001
). “
In vitro study of ultrasound based real-time tracking of renal stones for shock wave lithotripsy: Part 1
,”
J. Urol.
166
,
28
32
.
4.
Cleveland
,
R. O.
,
Anglade
,
R.
, and
Babayan
,
R. K.
(
2004
). “
Effect of stone motion on in vitro comminution efficiency of Storz Modulith SLX
,”
J. Endourol./Endourolog. Soc.
18
,
629
633
.
5.
Cleveland
,
R. O.
, and
McAteer
,
J. A.
(
2007
). “
The physics of shock wave lithotripsy
,” in
Smith's Textbook on Endourology
, edited by
G. H.
Badlani
,
D. H.
Bagley
,
R. V.
Clayman
,
S. G.
Docimo
,
G. H.
Jordan
,
L. R.
Kavoussi
,
B. R.
Lee
,
J. E.
Lingeman
,
G. M.
Preminger
, and
J. W.
Segura
(
BC Decker, Inc.
,
Ontario, Canada
), pp.
317
332
.
6.
Cleveland
,
R. O.
, and
Sapozhnikov
,
O. A.
(
2005
). “
Modeling elastic wave propagation in kidney stones with application to shock wave lithotripsy
,”
J. Acoust. Soc. Am.
118
,
2667
2676
.
7.
Coleman
,
A. J.
,
Saunders
,
J. E.
,
Crum
,
L. A.
, and
Dyson
,
M.
(
1987
). “
Acoustic cavitation generated by an extracorporeal shockwave lithotripter
,”
Ultrasound Med. Biol.
13
,
69
76
.
8.
Coloma
,
M.
,
Chiu
,
J. W.
,
White
,
P. F.
,
Tongier
,
W. K.
,
Duffy
,
L. L.
, and
Armbruster
,
S. C.
(
2000
). “
Fast-tracking after immersion lithotripsy: general anesthesia versus monitored anesthesia care
,”
Anesth. Analg.
91
,
92
96
.
9.
Davies
,
S. C.
,
Hill
,
A. L.
,
Holmes
,
R. B.
,
Halliwell
,
M.
, and
Jackson
,
P. C.
(
1994
). “
Ultrasound quantitation of respiratory organ motion in the upper abdomen
,”
Br. J. Radiol.
67
,
1096
1102
.
10.
Eisenmenger
,
W.
(
2001
). “
The mechanisms of stone fragmentation in ESWL
,”
Ultrasound Med. Biol.
27
,
683
693
.
11.
Esch
,
E.
,
Simmons
,
W. N.
,
Sankin
,
G.
,
Cocks
,
H. F.
,
Preminger
,
G. M.
, and
Zhong
,
P.
(
2010
). “
A simple method for fabricating artificial kidney stones of different physical properties
,”
Urol. Res.
38
,
315
319
.
12.
Forquin
,
P.
, and
Hild
,
F.
(
2010
). “
A probabilistic damage model of the dynamic fragmentation process in brittle materials
,”
Adv. Appl. Mech.
44
,
1
72
.
13.
Gerber
,
R.
,
Studer
,
U. E.
, and
Danuser
,
H.
(
2005
). “
Is newer always better? A comparative study of 3 lithotriptor generations
,”
J. Urol.
173
,
2013
2016
.
14.
Graber
,
S. F.
,
Danuser
,
H.
,
Hochreiter
,
W. W.
, and
Studer
,
U. E.
(
2003
). “
A prospective randomized trial comparing 2 lithotriptors for stone disintegration and induced renal trauma
,”
J. Urol.
169
,
54
57
.
15.
Gracewski
,
S. M.
,
Dahake
,
G.
,
Ding
,
Z.
,
Burns
,
S. J.
, and
Everbach
,
E. C.
(
1993
). “
Internal-stress wave measurements in solids subjected to lithotripter pulses
,”
J. Acoust. Soc. Am.
94
,
652
661
.
16.
Granz
,
B.
(
1994
). “
Measurement of shock wave properties after the passage through a tissue mimicking material
,” in
Proceedings of 1994 IEEE Ultrasonics Symposium
, pp.
1847
1851
.
17.
Granz
,
B.
, and
Kohler
,
G.
(
1992
). “
What makes a shock wave efficient in lithotripsy?
,”
J. Stone Disease
4
,
123
128
.
18.
Leighton
,
T. G.
,
Fedele
,
F.
,
Coleman
,
A. J.
,
McCarthy
,
C.
,
Ryves
,
S.
,
Hurrell
,
A. M.
,
De Stefano
,
A.
, and
White
,
P. R.
(
2008
). “
A passive acoustic device for real-time monitoring of the efficacy of shockwave lithotripsy treatment
,”
Ultrasound Med. Biol.
34
,
1651
1665
.
19.
Lingeman
,
J. E.
,
McAteer
,
J. A.
,
Gnessin
,
E.
, and
Evan
,
A. P.
(
2009
). “
Shock wave lithotripsy: advances in technology and technique
,”
Nat. Rev. Urol.
6
,
660
670
.
20.
Lokhandwalla
,
M.
, and
Sturtevant
,
B.
(
2000
). “
Fracture mechanics model of stone comminution in ESWL and implications for tissue damage
,”
Phys. Med. Biol.
45
,
1923
1940
21.
Lubock
,
P.
(
1989
). “
The physics and mechanics of lithotripters
,”
Dig. Dis. Sci.
34
,
999
1005
.
22.
Mancini
,
J. G.
,
Simmons
,
W. N.
, and
Raymundo
,
M. E.
(
2010
). “
In vivo stone fragmentation and tissue injury produced by a new acoustic lens for a Siemens lithotripter
,”
J. Endourol.
24
,
A20
A20
.
23.
Moerland
,
M. A.
,
van den Bergh
,
A. C.
,
Bhagwandien
,
R.
,
Janssen
,
W. M.
,
Bakker
,
C. J.
,
Lagendijk
,
J. J.
, and
Battermann
,
J. J.
(
1994
). “
The influence of respiration induced motion of the kidneys on the accuracy of radiotherapy treatment planning, a magnetic resonance imaging study
,”
Radiother. Oncol.
30
,
150
154
.
24.
Mota
,
A.
,
Knap
,
J.
, and
Ortiz
,
M.
(
2006
). “
Three-dimensional fracture and fragmentation of artificial kidney stones
,”
SciDAC 2006: Scientific Discovery Through Advanced Computing
46
,
299
303
.
25.
Ng
,
C. F.
,
Thompson
,
T.
, and
Tolley
,
D.
(
2007
). “
Characteristics and treatment outcome of patients requiring additional intravenous analgesia during extracorporeal shockwave lithotripsy with Dornier Compact Delta Lithotriptor
,”
Int. Urol. Nephrol.
39
,
731
735
.
26.
Orkisz
,
M.
,
Farchtchian
,
T.
,
Saighi
,
D.
,
Bourlion
,
M.
,
Thiounn
,
N.
,
Gimenez
,
G.
,
Debre
,
B.
, and
Flam
,
T. A.
(
1998
). “
Image based renal stone tracking to improve efficacy in extracorporeal lithotripsy
,”
J Urol.
160
,
1237
1240
.
27.
Ortiz
,
M.
(
1988
). “
Microcrack coalescence and macroscopic crack-growth initiation in brittle solids
,”
Int. J. Solids Struct.
24
,
231
250
.
28.
Philipp
,
A.
, and
Lauterborn
,
W.
(
1998
). “
Cavitation erosion by single laser-produced bubbles
,”
J. Fluid Mech.
361
,
75
116
.
29.
Pishchalnikov
,
Y. A.
,
McAteer
,
J. A.
,
Williams
,
J. C.
, Jr.
,
Pishchalnikova
,
I. V.
, and
Vonderhaar
,
R. J.
(
2006
). “
Why stones break better at slow shockwave rates than at fast rates: in vitro study with a research electrohydraulic lithotripter
,”
J. Endourol./Endourolog. Soc.
20
,
537
541
.
30.
Quinn
,
J. B.
, and
Quinn
,
G. D.
(
2010
). “
A practical and systematic review of Weibull statistics for reporting strengths of dental materials
,”
Dent. Mater.
26
,
135
147
.
31.
Rassweiler
,
J. J.
,
Knoll
,
T.
,
Kohrmann
,
K. U.
,
McAteer
,
J. A.
,
Lingeman
,
J. E.
,
Cleveland
,
R. O.
,
Bailey
,
M. R.
, and
Chaussy
,
C.
(
2011
). “
Shock wave technology and application: An update
,”
Eur. Urol.
59
,
784
796
.
32.
Rinne
,
H.
(
2009
).
The Weibull Distribution: A Handbook
(
CRC Press
,
Boca Raton, FL
), p.
784
.
33.
Rosin
,
P.
, and
Rammler
,
E.
(
1933
). “
The laws governing the fineness of powdered coal
,”
J. Inst. Fuel
7
,
29
36
.
34.
Sapozhnikov
,
O. A.
,
Maxwell
,
A. D.
,
MacConaghy
,
B.
, and
Bailey
,
M. R.
(
2007
). “
A mechanistic analysis of stone fracture in lithotripsy
,”
J. Acoust. Soc. Am.
121
,
1190
1202
.
35.
Sass
,
W.
,
Braunlich
,
M.
,
Dreyer
,
H. P.
,
Matura
,
E.
,
Folberth
,
W.
,
Preismeyer
,
H. G.
, and
Seifert
,
J.
(
1991
). “
The mechanisms of stone disintegration by shock waves
,”
Ultrasound Med. Biol.
17
,
239
243
.
36.
Simmons
,
W. N.
,
Cocks
,
F. H.
,
Zhong
,
P.
, and
Preminger
,
G.
(
2010
). “
A composite kidney stone phantom with mechanical properties controllable over the range of human kidney stones
,”
J. Mech. Behave. Biomed. Mater.
3
,
130
133
.
37.
Smith
,
N.
,
Sankin
,
G. N.
,
Simmons
,
W. N.
,
Nanke
,
R.
,
Fehre
,
J.
, and
Zhong
,
P.
(
2012
). “
A comparison of light spot hydrophone and fiber optic probe hydrophone for lithotripter field characterization
,”
Rev. Sci. Instrum.
83
,
014301
.
38.
Smith
,
N.
, and
Zhong
,
P.
(
2012
). “
Stone comminution correlates with the average peak pressure incident on a stone during shock wave lithotripsy
,”
J. Biomech.
,
45
,
2520
2525
.
39.
Sorensen
,
M. D.
,
Bailey
,
M. R.
,
Shah
,
A. R.
,
Hsi
,
R. S.
,
Paun
,
M.
, and
Harper
,
J. D.
(
2012
). “
Quantitative assessment of shockwave lithotripsy accuracy and the effect of respiratory motion
,”
J. Endourol./Endourolog. Soc.
26
,
1070
1074
.
40.
Weibull
,
W.
(
1939
). “
A statistical theory on the strength of materials
,” Proc. Roy. Swed. Inst. Eng. Res., No. 151.
41.
Weibull
,
W.
(
1951
). “
A statistical distribution function of wide applicability
,”
J. Appl. Mech.
18
,
293
297
.
42.
Xi
,
X.
, and
Zhong
,
P.
(
2000
). “
Improvement of stone fragmentation during shock-wave lithotripsy using a combined EH/PEAA shock-wave generator-in vitro experiments
,”
Ultrasound Med. Biol.
26
,
457
467
.
43.
Xi
,
X. F.
, and
Zhong
,
P.
(
2001
). “
Dynamic photoelastic study of the transient stress field in solids during shock wave lithotripsy
,”
J. Acoust. Soc. Am.
109
,
1226
1239
.
46.
Zhong
,
P.
(
2013
). “
Shock wave lithotripsy
,”
Bubble Dynamics and Shock Waves, in the Series of Shock Wave Science and Technology Reference Library 8
, edited by
C. F.
Delale
(
Springer-Verlag
,
Berlin
), pp.
291
338
.
44.
Zhu
,
S.
,
Cocks
,
F. H.
,
Preminger
,
G. M.
, and
Zhong
,
P.
(
2002
). “
The role of stress waves and cavitation in stone comminution in shock wave lithotripsy
,”
Ultrasound Med. Biol.
28
,
661
671
.
45.
Zohdi
,
T. I.
, and
Szeri
,
A. J.
(
2005
) “
Fatigue of kidney stones with heterogeneous microstructure subjected to shock-wave lithotripsy
,”
J. Biomed. Mater. Res., Part B: Appl. Biomater.
75
,
351
358
.
You do not currently have access to this content.