A hybrid method for estimating temperature with spatial mapping using diagnostic ultrasound, based on detection of echo shifts from tissue undergoing thermal treatment, is proposed. Cross-correlation and zero-crossing tracking are two conventional algorithms used for detecting echo shifts, but their practical applications are limited. The proposed hybrid method combines the advantages of both algorithms with improved accuracy in temperature estimation. In vitro experiments were performed on porcine muscle for preliminary validation and temperature calibration. In addition, thermal mapping of rabbit thigh muscle in vivo during high-intensity focused ultrasound heating was conducted. Results from the in vitro experiments indicated that the difference between the estimated temperature change by the proposed hybrid method and the actual temperature change measured by the thermocouple was generally less than 1 °C when the increase in temperature due to heating was less than 10 °C. For the in vivo study, the area predicted to experience the highest temperature coincided well with the focal point of the high-intensity focused ultrasound transducer. The computational efficiency of the hybrid algorithm was similar to that of the fast cross-correlation algorithm, but with an improved accuracy. The proposed hybrid method could provide an alternative means for non-invasive monitoring of limited temperature changes during hyperthermia therapy.

1.
J.
Heisterkamp
,
R.
van Hillegersberg
, and
J. N.
Ijzermans
, “
Critical temperature and heating time for coagulation damage: Implications for interstitial laser coagulation (ILC) of tumors
,”
Lasers Surg. Med.
25
,
257
262
(
1999
).
2.
I.
Hilger
,
A.
Rapp
,
K. O.
Greulich
, and
W. A.
Kaiser
, “
Assessment of DNA damage in target tumor cells after thermoablation in mice
,”
Radiology
237
,
500
506
(
2005
).
3.
J. E.
Kennedy
,
G. R.
Ter Haar
, and
D.
Cranston
, “
High intensity focused ultrasound: Surgery of the future?
,”
Br. J. Radiol.
76
,
590
599
(
2003
).
4.
C. M. C.
Tempany
,
E. A.
Stewart
,
N.
McDannold
,
B. J.
Quade
,
F. A.
Jolesz
, and
K.
Hynynen
, “
MR imaging-guided focused ultrasound surgery of uterine leiomyomas: A feasibility study
,”
Radiology
226
,
897
905
(
2003
).
5.
K.
Hynynen
,
N. I.
Vykhodtseva
,
A. H.
Chung
,
V.
Sorrentino
,
V.
Colucci
, and
F. A.
Jolesz
, “
Thermal effects of focused ultrasound on the brain: Determination with MR imaging
,”
Radiology
204
,
247
253
(
1997
).
6.
A. N.
Amini
,
E. S.
Ebbini
, and
T. T.
Georgiou
, “
Noninvasive estimation of tissue temperature via high-resolution spectral analysis techniques
,”
IEEE Trans. Biomed. Eng.
52
,
221
228
(
2005
).
7.
N. R.
Miller
,
K. M.
Bograchev
, and
J. C.
Bamber
, “
Ultrasonic temperature imaging for guiding focused ultrasound surgery: Effect of angle between imaging beam and therapy beam
,”
Ultrasound Med. Biol.
31
,
401
413
(
2005
).
8.
R.
Seip
, “
Noninvasive real-time multipoint temperature control for ultrasound phased array treatments
,”
IEEE Trans. Ultrasonics Ferroelectr.
43
,
1063
1073
(
1996
).
9.
R. M.
Arthur
,
W. L.
Straube
,
J. D.
Starman
, and
E. G.
Moros
, “
Noninvasive temperature estimation based on the energy of backscattered ultrasound
,”
Med. Phys.
30
,
1021
1029
(
2003
).
10.
A.
Anand
and
P. J.
Kaczkowski
, “
Noninvasive measurement of local thermal diffusivity using backscattered ultrasound and focused ultrasound heating
,”
Ultrasound Med. Biol.
34
,
1449
1464
(
2008
).
11.
H. L.
Liu
,
M. L.
Li
,
T. C.
Shih
,
S. M.
Huang
,
I. Y.
Lu
,
D. Y.
Lin
,
S. M.
Lin
, and
K. C.
Ju
, “
Instantaneous frequency-based ultrasonic temperature estimation during focused ultrasound thermal therapy
,”
Ultrasound Med. Biol.
35
,
1647
1661
(
2009
).
12.
R.
Maass-Moreno
,
C. A.
Damianou
, and
N. T.
Sanghvi
, “
Noninvasive temperature estimation in tissue via ultrasound echo-shifts. Part, I. I. In vitro study
,”
J. Acoust. Soc. Am.
100
,
2522
2530
(
1996
).
13.
R.
Seip
and
E. S.
Ebbini
, “
Noninvasive estimation of tissue temperature response to heating fields using diagnostic ultrasound
,”
IEEE Trans. Biomed. Eng.
42
,
828
839
(
1995
).
14.
C.
Simon
,
P.
VanBaren
, and
E. S.
Ebbini
, “
Two-dimensional temperature estimation using diagnostic ultrasound
,”
IEEE Trans. Ultrasonics Ferroelectr.
45
,
1088
1099
(
1998
).
15.
A. M.
Pouch
,
T. W.
Cary
,
S. M.
Schultz
, and
C. M.
Sehgal
, “
In vivo noninvasive temperature measurement by B-Mode ultrasound imaging
,”
J. Ultrasound Med.
29
,
1595
1606
(
2010
).
16.
Y.
Lu
,
X. Z.
Liu
,
X. F.
Gong
, and
D.
Zhang
, “
Relationship between the temperature and the acoustic nonlinearity parameter in biological tissues
,”
Chin. Sci. Bull.
49
,
2360
2363
(
2004
).
17.
X.
Liu
,
X.
Gong
,
C.
Yin
,
J.
Li
, and
D.
Zhang
, “
Noninvasive estimation of temperature elevations in biological tissues using acoustic nonlinearity parameter imaging
,”
Ultrasound Med. Biol.
34
,
414
424
(
2008
).
18.
B.
Arnal
,
M.
Pernot
, and
M.
Tanter
, “
Monitoring of thermal therapy based on shear modulus changes: II. Shear wave imaging of thermal lesions
,”
IEEE Trans. Ultrasonics Ferroelectr.
58
,
1603
1611
(
2011
).
19.
B.
Arnal
,
M.
Pernot
, and
M.
Tanter
, “
Monitoring of thermal therapy based on shear modulus changes: I. Shear wave thermometry
,”
IEEE Trans. Ultrasonics Ferroelectr.
58
,
369
378
(
2011
).
20.
J.
Bercoff
,
M.
Tanter
, and
M.
Fink
, “
Supersonic shear imaging: A new technique for soft tissue elasticity mapping
,”
IEEE Trans. Ultrasonics Ferroelectr.
51
,
396
409
(
2004
).
21.
C. L.
Yang
,
H.
Zhu
,
S. C.
Wu
,
Y. P.
Bai
, and
H. J.
Gao
, “
Correlations between B-Mode ultrasonic image texture features and tissue temperature in microwave ablation
,”
J. Ultrasound Med.
29
,
1787
1799
(
2010
).
22.
T.
Varghese
,
J. A.
Zagzebski
,
Q.
Chen
,
U.
Techavipoo
,
G.
Frank
,
C.
Johnson
,
A.
Wright
, and
F. T.
Lee
, Jr.
, “
Ultrasound monitoring of temperature change during radiofrequency ablation: Preliminary in-vivo results
,”
Ultrasound Med. Biol.
28
,
321
329
(
2002
).
23.
N. R.
Miller
,
J. C.
Bamber
, and
P. M.
Meaney
, “
Fundamental limitations of noninvasive temperature imaging by means of ultrasound echo strain estimation
,”
Ultrasound Med. Biol.
28
,
1319
1333
(
2002
).
24.
K. C.
Ju
and
H. L.
Liu
, “
Zero-crossing tracking technique for noninvasive ultrasonic temperature estimation
,”
J. Ultrasound Med.
29
,
1607
1615
(
2010
).
25.
A. J.
H. Hii
,
C. E.
Hann
,
J. G.
Chase
, and
E. E.
W. Van Houten
, “
Fast normalized cross correlation for motion tracking using basis functions
,”
Comput. Methods Programs Biomed.
82
,
144
156
(
2006
).
26.
J. C.
Yoo
and
T. H.
Han
, “
Fast normalized cross-correlation
,”
Circ. Syst. Signal Process.
28
,
819
843
(
2009
).
27.
D. L.
Sandulescu
,
D.
Dumitrescu
,
I.
Rogoveanu
, and
A.
Saftoiu
, “
Hybrid ultrasound imaging techniques (fusion imaging)
,”
World J. Gastroenterol.
17
,
49
52
(
2011
).
28.
R.
Steel
,
P. J.
Fish
,
K. V.
Ramnarine
,
A.
Criton
,
H. F.
Routh
, and
P. R.
Hoskins
, “
Velocity fluctuation reduction in vector Doppler ultrasound using a hybrid single/dual-beam algorithm
,”
IEEE Trans. Ultrasonics Ferroelectr. Freq. Control
50
,
89
93
(
2003
).
29.
P. J.
Brands
,
A. P.
Hoeks
,
L. A.
Ledoux
, and
R. S.
Reneman
, “
A radio frequency domain complex cross-correlation model to estimate blood flow velocity and tissue motion by means of ultrasound
,”
Ultrasound Med. Biol.
23
,
911
920
(
1997
).
30.
C.
Jahnke
,
I.
Paetsch
,
K.
Nehrke
,
B.
Schnackenburg
,
A.
Bornstedt
,
R.
Gebker
,
E.
Fleck
, and
E.
Nagel
, “
A new approach for rapid assessment of the cardiac rest period for coronary MRA
,”
J. Cardiovasc. Magn. Reson.
7
,
395
399
(
2005
).
31.
K.
Nehrke
and
P.
Börnert
, “
Prospective correction of affine motion for arbitrary MR sequences on a clinical scanner
,”
Magn. Reson. Med.
54
,
1130
1138
(
2005
).
32.
W. R.
Hedrick
,
D. L.
Hykes
, and
D. E.
Starchman
,
Ultrasound physics and instrumentation
, 3rd ed. (
Mosby
,
St. Louis
,
1995
).
33.
H. L.
Liu
,
M. L.
Li
,
P. H.
Tsui
,
M. S.
Lin
,
S. M.
Huang
, and
J.
Bai
, “
A unified approach to combine temperature estimation and elastography for thermal lesion determination in focused ultrasound thermal therapy
,”
Phys. Med. Biol.
56
,
169
186
(
2011
).
You do not currently have access to this content.