The classical psychophysical paradigm of narrow-band tone-in-noise (TiN) detection has been under investigation for more than 70 years, yet no conclusive answer has been given as to which auditory stimulus features listeners rely on. Here, individual observer models were fit to a large trial-by-trial behavioral data set using a modern statistical analysis procedure. Relative perceptual weights were estimated for a set of auditory features including sound energy, representations of the spectra as well as summary statistics of both fine structure and envelope. The fitted models captured the behavior of all listeners on a single-trial level. The estimated perceptual weights were stable across signal levels. They suggest that responses of observers depended on stimulus energy, though that cue was not always dominant, as well as on band-pass detectors applied to the fine structure spectrum. A subset of the observers exhibited an additional dependence on sound envelope which was best captured by two envelope descriptors: average slope and extrema count. For some listeners, a concurrent analysis of sequential dependencies showed interactions between the current and several preceding decisions. There was no unique answer regarding the strategy individual listeners employ during TiN detection, and implications thereof are discussed.

1.
Berg
,
B. G.
(
2004
). “
A temporal model of level-invariant, tone-in-noise detection
,”
Psychol. Rev.
111
,
914
930
.
2.
Berg
,
B. G.
,
Nguyen
,
Q. T.
, and
Green
,
D. M.
(
1992
). “
Discrimination of narrow-band spectra. I: Spectral weights and pitch cues
,”
J. Acoust. Soc. Am.
92
,
1911
1918
.
3.
Busse
,
L.
,
Ayaz
,
A.
,
Dhruv
,
N. T.
,
Katzner
,
S.
,
Saleem
,
A. B.
,
Schölvinck
,
M. L.
,
Zaharia
,
A. D.
, and
Carandini
,
M.
(
2011
). “
The detection of visual contrast in the behaving mouse
,”
J. Neurosci.
31
,
11351
11361
.
4.
Carney
,
L. H.
,
Heinz
,
M.
,
Evilsizer
,
M. E.
,
Gilkey
,
R. H.
, and
Colburn
,
H. S.
(
2002
). “
Auditory phase opponency: A temporal model for masked detection at low frequencies
,”
Acta Acust. Acust.
88
,
334
347
.
5.
Chopin
,
A.
, and
Mamassian
,
P.
(
2012
). “
Predictive properties of visual adaptation
,”
Curr. Biol.
22
,
622
626
.
6.
Collett
,
D.
(
2002
).
Modelling Binary Data
, 2nd ed. (
Chapman & Hall/CRC
,
Boca Raton, FL
).
7.
Dau
,
T.
,
Püschel
,
D.
, and
Kohlrausch
,
A.
(
1996a
). “
A quantitative model of the ‘effective’ signal processing in the auditory system. I. Model structure
,”
J. Acoust. Soc. Am.
99
,
3615
3622
.
8.
Dau
,
T.
,
Püschel
,
D.
, and
Kohlrausch
,
A.
(
1996b
). “
A quantitative model of the ‘effective’ signal processing in the auditory system. II. Simulations and measurements
,”
J. Acoust. Soc. Am.
99
,
3623
3631
.
9.
Davidson
,
S. A.
,
Gilkey
,
R. H.
,
Colburn
,
H. S.
, and
Carney
,
L. H.
(
2009a
). “
An evaluation of models for diotic and dichotic detection in reproducible noises
,”
J. Acoust. Soc. Am.
126
,
1906
1925
.
10.
Davidson
,
S. A.
,
Gilkey
,
R. H.
,
Colburn
,
H. S.
, and
Carney
,
L. H.
(
2009b
). “
Diotic and dichotic detection with reproducible chimeric stimuli
,”
J. Acoust. Soc. Am.
126
,
1889
1905
.
11.
Evilsizer
,
M. E.
,
Gilkey
,
R. H.
,
Mason
,
C. R.
,
Colburn
,
H. S.
, and
Carney
,
L. H.
(
2002
). “
Binaural detection with narrowband and wideband reproducible noise maskers: I. Results for human
,”
J. Acoust. Soc. Am.
111
,
336
345
.
12.
Fan
,
R.-E.
,
Chang
,
K.-W.
,
Hsieh
,
C.-J.
,
Wang
,
X.-R.
, and
Lin.
,
C.-J.
(
2008
). “
Liblinear: A library for large linear classification
,”
J. Mach. Learn. Res.
9
,
1871
1874
.
13.
Felsen
,
G.
, and
Dan
,
Y.
(
2005
). “
A natural approach to studying vision
,”
Nature
8
,
1643
1646
.
14.
Fletcher
,
H.
(
1938
). “
Loudness, masking and their relation to the hearing process and the problem of noise measurement
,”
J. Acoust. Soc. Am.
9
,
275
293
.
15.
Fletcher
,
H.
(
1940
). “
Auditory patterns
,”
Rev. Mod. Phys.
12
,
47
65
.
16.
Fründ
,
I.
,
Wichmann
,
F. A.
, and
Macke
,
J. H.
(
2012
). “
Dealing with sequential dependencies in psychophysical data
,” in
Cosyne Abstracts 2013
(
Salt Lake City
,
UT
), p.
97
.
17.
Gilkey
,
R. H.
, and
Robinson
,
D. E.
(
1986
). “
Models of auditory masking: A molecular psychophysical approach
,”
J. Acoust. Soc. Am.
79
,
1499
1510
.
18.
Goris
,
R. L. T.
,
Wagemans
,
J.
, and
Wichmann
,
F. A.
(
2008
). “
Modelling contrast discrimination data suggest both the pedestal effect and stochastic resonance to be caused by the same mechanism
,”
J. Vision
8
,
17
.
1
21
.
19.
Green
,
D. M.
(
1964
). “
Consistency of auditory detection judgments
,”
Psychol. Rev.
71
,
392
407
.
20.
Green
,
D. M.
,
Berg
,
B. G.
,
Dai
,
H.
,
Eddins
,
D. A.
,
Onsan
,
Z.
, and
Nguyen
,
Q.
(
1992
). “
Spectral shape discrimination of narrow-band sounds
,”
J. Acoust. Soc. Am.
92
,
2586
2597
.
21.
Green
,
D. M.
,
Luce
,
R. D.
, and
Duncan
,
J. E.
(
1977
). “
Variability and sequential effects in magnitude production and estimation of auditory intensity
,”
Percept. Psychophys.
22
,
450
456
.
22.
Green
,
D. M.
, and
Swets
,
J. A.
(
1966
).
Signal Detection Theory and Psychophysics
(
Wiley
,
New York
).
23.
Hartmann
,
W. M.
(
1998
).
Signals, Sound, and Sensation (Modern Acoustics and Signal Processing)
(
Springer Science+Business Media
,
New York)
, Chap. 10.
24.
Hastie
,
T.
,
Tibshirani
,
R.
, and
Friedman
,
J.
(
2009
).
The Elements of Statistical Learning
, 2nd ed. (
Springer Science+Business Media
,
New York
).
25.
Heinz
,
M. G.
,
Zhang
,
X.
,
Bruce
,
I. C.
, and
Carney
,
L. H.
(
2001
). “
Auditory nerve model for predicting performance limits of normal and impaired listeners
,”
ARLO
2
,
91
96
.
26.
Howarth
,
C. I.
, and
Bulmer
,
M. G.
(
1956
). “
Non-random sequences in visual threshold experiments
,”
Q. J. Exp. Psychol.
8
,
163
171
.
27.
Kidd
,
G.
,
Mason
,
C. R.
,
Brantley
,
M. A.
, and
Owen
,
G. A.
(
1989
). “
Roving-level tone-in-noise detection
,”
J. Acoust. Soc. Am.
86
,
1310
1317
.
28.
Kleiner
,
M.
,
Brainard
,
D.
, and
Pelli
,
D.
(
2007
). “
What's new in psychtoolbox-3?
,” in
Perception 36 ECVP Abstract Supplement
, p.
14
.
29.
Lages
,
M.
, and
Treisman
,
M.
(
1998
). “
Spatial frequency discrimination: visual long-term memory or criterion setting?
,”
Vision Res.
38
,
557
572
.
30.
Li
,
Xiangrui
(
2008
). “response time box [experimental apparatus],” http://lobes.usc.edu/RTbox, Department of Psychology, University of Southern California (Last viewed 09/12/12).
31.
Neri
,
P.
, and
Levi
,
D. M.
(
2006
). “
Receptive versus perceptive fields from the reverse-correlation viewpoint
,”
Vision Res.
46
,
2465
2474
.
32.
Peterson
,
W. W.
, and
Birdsall
,
T. G.
(
1953
). “
The theory of signal detectability
,” Technical Report No. 13, Electronic Defense Group, Department of Electrical Engineering, University of Michigan, Ann Arbor, MI.
33.
Pièron
,
H.
(
1914
). “
Recherches sur les lois de variation des temps de latence sensorielle en fonction des intensités excitatrices” (“Research on the laws of variation in sensory latency as a function of excitatory intensities”)
,
Année Psychol.
20
,
17
96
.
34.
Richards
,
V. M.
(
1992
). “
The detectability of a tone added to narrow bands of equal-energy noise
,”
J. Acoust. Soc. Am.
91
,
3424
3435
.
35.
Richards
,
V. M.
, and
Buss
,
E.
(
1996
). “
Frequency correlation functions for the detection of a tone added to modulated noise maskers
,”
J. Acoust. Soc. Am.
99
,
1645
1652
.
36.
Richards
,
V. M.
,
Heller
,
L. M.
, and
Green
,
D. M.
(
1991
). “
The detection of a tone added to a narrow band of noise: The energy model revisited
,”
Q. J. Exp. Psychol. A
43
,
481
501
.
37.
Richards
,
V. M.
, and
Nekrich
,
R. D.
(
1993
). “
The incorporation of level and level-invariant cues for the detection of a tone added to noise
,”
J. Acoust. Soc. Am.
94
,
2560
2574
.
38.
Rosas
,
P.
, and
Wichmann
,
F. A.
(
2011
). “
Cue Combination: Beyond Optimality
,” in
Sensory Cue Integration
, edited by
J.
Trommershäuser
,
K.
Körding
, and
M. S.
Landy
(
Oxford University Press
,
Oxford
), pp.
144
152
.
39.
Rust
,
N. C.
, and
Movshon
,
J. A.
(
2005
). “
In praise of artifice
,”
Nature Neurosci.
8
,
1647
1650
.
40.
Schönfelder
,
V. H.
, and
Wichmann
,
F. A.
(
2012
). “
Sparse regularized regression identifies behaviorally relevant stimulus features from psychophysical data
,”
J. Acoust. Soc. Am.
131
,
3953
3969
.
41.
Sherwin
,
C. W.
,
Kodman
,
F. J.
,
Kovaly
,
J. J.
,
Prothe
,
W. C.
, and
Melrose
,
J.
(
1956
). “
Detection of Signals in Noise: A Comparison between the Human Detector and an Electronic Detector
,”
J. Acoust. Soc. Am.
28
,
617
622
.
42.
Treisman
,
M.
, and
Williams
,
T. C.
(
1984
). “
A theory of criterion setting with an application to sequential dependencies
,”
Psychol. Rev.
91
,
68
111
.
43.
Wagenmakers
,
E.-J.
,
Wetzels
,
R.
,
Borsboom
,
D.
, and
van der Maas
,
H. L. J.
(
2011
). “
Why psychologists must change the way they analyze their data: The case of psi: Comment on Bem (2011)
.”
J. Pers. Soc. Psychol.
100
,
426
432
.
44.
Wichmann
,
F. A.
, and
Hill
,
N. J.
(
2001
). “
The psychometric function: I. Fitting, sampling, and goodness of fit
,”
Percept. Psychophys.
63
,
1293
1313
.
You do not currently have access to this content.