Elliptical particle motion, often encountered in acoustic fields containing interference between a source signal and its reflections, can be quantified by the degree of circularity, a vector quantity formulated from acoustic particle velocity, or vector intensity measurements. Acoustic analysis based on the degree of circularity is expected to find application in ocean waveguides as its spatial dependence relates to the acquisition geometry, water column sound speed, surface conditions, and bottom properties. Vector sensor measurements from a laboratory experiment are presented to demonstrate the depth dependence of both the degree of circularity and an approximate formulation based on vertical intensity measurements. The approximation is applied to vertical intensity field measurements made in a 2006 experiment off the New Jersey coast (in waters 80 m deep) to demonstrate the effect of sediment structure on the range dependence of the degree of circularity. The mathematical formulation presented here establishes the framework to readily compute the degree of circularity from experimental measurements; the experimental examples are provided as evidence of the spatial and frequency dependence of this fundamental vector property.

1.
A.
Thode
,
J.
Skinner
,
P.
Scott
,
J.
Roswell
,
J.
Straley
, and
K.
Folkert
, “
Tracking sperm whales with a towed acoustic vector sensor
,”
J. Acoust. Soc. Am.
128
,
2681
2694
(
2010
).
2.
P.
Santos
,
O. C.
Rodrguez
,
P.
Felisberto
, and
S. M.
Jesus
, “
Seabed geoacoustic characterization with a vector sensor array
,”
J. Acoust. Soc. Am.
128
,
2652
2663
(
2010
).
3.
G. L.
D'Spain
,
J. C.
Luby
,
G. R.
Wilson
, and
R. A.
Gramann
, “
Vector sensors and vector sensor line arrays: Comments on optimal array gain and detection
,”
J. Acoust. Soc. Am.
120
,
171
185
(
2006
).
4.
D. R.
Dall'Osto
,
P. H.
Dahl
, and
J. W.
Choi
, “
Properties of the acoustic intensity vector field in a shallow water waveguide
,”
J. Acoust. Soc. Am.
131
,
2023
2035
(
2012
).
5.
R. V.
Waterhouse
,
T. W.
Yates
,
D.
Feit
, and
Y. N.
Liu
, “
Energy streamlines of a sound source
,”
J. Acoust. Soc. Am.
78
,
758
762
(
1985
).
6.
G. L.
D'Spain
, “
Polarization of acoustic particle motion in the ocean and its relation to vector acoustic intensity
,” in
Second International Workshop on Acoustical Engineering and Technology
,
Harbin
,
China
,
1999
.
7.
Y. M.
Jiang
,
N. R.
Chapman
, and
P.
Gerstoft
, “
Short range travel time geoacoustic inversion with vertical line array
,”
J. Acoust. Soc. Am.
124
,
EL135
EL140
(
2008
).
8.
J. W.
Choi
,
P. H.
Dahl
, and
J.
Goff
, “
Observations of the R reflector and sediment interface reflection at the Shallow Water'06 Central Site
,”
J. Acoust. Soc. Am.
124
,
EL128
EL134
(
2008
).
9.
Y. M.
Jiang
,
N. R.
Chapman
, and
P.
Gerstoft
, “
Estimation of the geoacoustic properties of marine sediment using a hybrid differential evolution inversion method
,”
IEEE J. Ocean. Eng.
35
(
1
),
59
69
(
2010
).
10.
J.
Yang
,
D. R.
Jackson
, and
D. J.
Tang
, “
Mid-frequency geoacoustic inversion using bottom loss data from the Shallow Water 2006 Experiment
,”
J. Acoust. Soc. Am.
131
,
1711
1721
(
2012
).
11.
V. A.
Shchurov
,
V. P.
Kuleshov
, and
A. V.
Cherkasov
, “
Vortex properties of the acoustic intensity vector in a shallow sea
,”
Acoust. Phys.
57
(
6
),
851
856
(
2011
).
12.
O. A.
Godin
, “
Low-frequency sound transmission through a gas–liquid interface
,”
J. Acoust. Soc. Am.
123
,
1866
1879
(
2008
).
13.
M. J.
Wilmut
,
N. R.
Chapman
,
G. J.
Heard
, and
G. R.
Ebbeson
, “
Inversion of Lloyd mirror field for determining a sources track
,”
IEEE J. Ocean. Eng.
32
(
4
),
940
947
(
2007
).
14.
M. S.
Ballard
,
K. M.
Becker
, and
J. A.
Goff
, “
Geoacoustic inversion for the New Jersey Shelf: 3-D sediment model
,”
IEEE J. Ocean. Eng.
35
(
1
),
28
42
(
2010
).
15.
M. D.
Collins
, “
A split-step Pade solution for the parabolic equations method
,”
J. Acoust. Soc. Am.
93
,
1736
1742
(
1993
).
16.
J. A.
Goff
and
J. A.
Austin
, Jr.
, “
Seismic and bathymetric evidence for four different episodes of iceberg scouring on the New Jersey outer shelf: Possible correlation to Heinrich events
,”
Mar. Geol.
266
,
244
254
(
2009
).
17.
H.
Schmidt
and
A. B.
Baggeroer
, “
Physics-imposed resolution and robustness issues in seismo-acoustic parameter inversion
,” in
Full Field Inversion Methods in Ocean and Seismo-Acoustics
, edited by
O.
Diachok
,
A.
Caiti
,
P.
Gerstoft
, and
H.
Schmidt
(
Kluwer
,
Dordrecht, The Netherlands
,
1995
), pp.
85
90
.
You do not currently have access to this content.