In this study, a reference-free damage characterization technique is developed not only to identify but also to locate and quantify damage in composite structures subject to varying temperature conditions. First, damage is characterized in terms of a damage index (m-value) defined as the ratio of damage size to the wavelength of the A0 mode within the damage. Then, a feasible solution space defining all possible combinations of the damage location and size are estimated without using any prior baseline data obtained from the pristine condition of a structure or different paths. When additional information such as the A0 mode group velocity within the pristine region of the structure becomes available, the estimates for the damage location and size are updated with better accuracy. The uniqueness of this study lies in that damage localization and quantification as well as identification are all performed without comparing current Lamb wave signals with the ones obtained from the pristine condition of the target structure, making the proposed technique more attractive for online monitoring. Numerical and experimental tests are presented to demonstrate the effectiveness of the proposed damage detection technique under varying temperature.

1.
P.
Cawley
and
D.
Alleyne
, “
The use of Lamb waves for the long range inspection of large structures
,”
Ultrasonics
34
,
287
290
(
1996
).
2.
T.
Ghosh
,
T.
Kundu
, and
P.
Karpur
, “
Efficient use of Lamb waves for detecting defects in large plates
,”
Ultrasonics
36
,
791
801
(
1998
).
3.
J. L.
Rose
,
A.
Pilarski
, and
J. J.
Dirit
, “
An approach to guided wave mode selection for inspection of laminated plate
,”
J. Reinf. Plastics Composites
12
,
536
544
(
1993
).
4.
N.
Guo
and
P.
Cawley
, “
The interaction of Lamb wave with delaminations in composite liminates
,”
J. Acoust. Soc. Am.
94
,
2240
2246
(
1993
).
5.
S. H. D.
Valdez
and
C.
Soutis
, “
Real-time nondestructive evaluation of fiber composite laminates using low-frequency Lamb waves
,”
J. Acoust. Soc. Am.
111
,
2026
2033
(
2002
).
6.
W.
Lestari
and
P.
Qiao
, “
Application of wave propagation analysis for damage identification in composite laminated beams
,”
J. Compos. Mater.
39
,
1967
1984
(
2005
).
7.
M.
Yang
and
P.
Qiao
, “
Modeling and experimental detection of damage in various materials using the pulse-echo method and piezoelectric sensor/actuators
,”
Smart Mater. Struct.
14
,
1083
1100
(
2005
).
8.
C. M.
Yeum
,
H.
Sohn
,
J. B.
Ihn
, and
H. J.
Lim
, “
Instantaneous delamination detection in a composite plate using a dual piezoelectric transducer network
,”
Compos. Struct.
94
,
3490
3499
(
2012
).
9.
C-T.
Ng
and
M.
Veidt
, “
Scattering of the fundamental anti-symmetric Lamb wave at delaminations in composite laminates
,”
J. Acoust. Soc. Am.
129
,
1288
1296
(
2011
).
10.
G.
Petculescu
,
S.
Krishaswamy
, and
J. D.
Achenbach
, “
Group delay measurements using modally selective Lamb wave transducers for detection and sizing of delaminations in composites
,”
Smart Mater. Struct.
17
,
015007
(
2008
).
11.
S. S.
Kessler
,
S. M.
Spearing
, and
C.
Soutis
, “
Damage detection in composite materials using Lamb wave methods
,”
Smart Mater. Struct.
11
,
269
278
(
2002
).
12.
C.
Ramadas
,
K.
Balasubramaniam
,
M.
Joshi
, and
C. V.
Krishnamurthy
, “
Interaction of the primary anti-symmetric Lamb mode (A0) with symmetric delaminations: Numerical and experimental studies
,”
Smart Mater. Struct.
18
,
085011
(
2009
).
13.
C.
Ramadas
,
K.
Balasubramaniam
,
M.
Joshi
, and
C. V.
Krishnamurthy
, “
Interaction of guided Lamb waves with an asymmetrically located delamination in a laminated composite plate
,”
Smart Mater. Struct.
19
,
065009
(
2010
).
14.
T.
Hayashi
and
K.
Kawashima
, “
Multiple reflections of Lamb waves at a delamination
,”
Ultrasonics
40
,
193
197
(
2002
).
15.
H.
Sohn
,
D.
Dutta
,
J. Y.
Yang
,
H. J.
Park
,
M.
DeSimio
,
S.
Olsen
, and
E.
Swenson
, “
Delamination detection in composites through guided wave field image processing
,”
Compos. Sci. Technol.
71
,
1250
1256
(
2011
).
16.
Y.
Liu
and
J. E.
Michaels
, “
A methodology for structural health monitoring with diffuse ultrasonic waves in the presence of temperature variations
,”
Ultrasonics
43
,
717
731
(
2005
).
17.
T.
Clarke
,
P.
Cawley
,
P. D.
Wilcox
, and
A. J.
Croxford
, “
Evaluation of the damage detection capacity of a sparse-array guided-wave SHM system applied to a complex structure under varying thermal conditions
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
56
,
2666
2678
(
2009
).
18.
C. K.
Oh
and
H.
Sohn
, “
Damage diagnosis under environmental and operational variations using unsupervised support vector machine
,”
J. Sound Vib.
325
,
224
239
(
2009
).
19.
H. J.
Lim
,
M. K.
Kim
,
H.
Sohn
, and
C. Y.
Park
, “
Impedance based damage detection under varying temperature and loading conditions
,”
NDT&E Int.
44
,
740
750
(
2011
).
20.
H.
Sohn
,
G.
Park
,
J. R.
Wail
,
N. P.
Limback
, and
C. R.
Farrar
, “
Wavelet-based active sensing for delamination detection in composite structures
,”
Smart Mater. Struct.
13
,
153
160
(
2004
).
21.
S. B.
Kim
and
H.
Sohn
, “
Instantaneous reference-free crack detection based on polarization characteristics of piezoelectric materials
,”
Smart Mater. Struct.
16
,
2375
2387
(
2007
).
22.
H. W.
Park
,
H.
Sohn
,
K. H.
Law
, and
C. R.
Farrar
, “
Time reversal active sensing for health monitoring of a composite plate
,”
J. Sound Vib.
302
,
50
66
(
2007
).
23.
S. G.
Mallat
and
Z.
Zhang
, “Matching pursuits with time-frequency dictionaries
,”
IEEE Trans. Sig. Process.
41
,
3397
3415
(
1993
).
24.
J. C.
Hong
,
K. H.
Sun
, and
Y. Y.
Kim
, “
The matching pursuit approach based on the modulated Gaussian pulse for efficient guided-wave damage inspection
,”
Smart Mater. Struct.
14
,
548
560
(
2005
).
25.
C. M.
Yeum
,
H.
Sohn
, and
J. B.
Ihn
, “Lamb wave mode decomposition using concentric ring and circular piezoelectric transducers
,”
Wave Motion
48
,
358
370
(
2011
).
26.
C. H.
Wang
and
L. R. F.
Rose
, “Wave reflection and transmission in beams containing delamination and inhomogeneity
,”
J. Sound Vib.
264
,
851
872
(
2003
).
27.
M.
Palacz
,
M.
Krawczuk
, and
W.
Ostachowicz
, “
The spectral finite element model for analysis of flexural-shear coupled wave propagation. Part 2: Delaminated multilayer composite beam
,”
Compos. Struct
.
68
,
45
51
(
2005
).
28.
D. E.
Adams
,
Health Monitoring of Structural Materials and Components
(
John Wiley and Sons
,
West Sussex, UK
,
2007
), Chap. 3, pp.
113
.
29.
S.
Gopalakrishnan
, “
Modeling aspects in finite elements
,” in
Encyclopedia of Structural Health Monitoring
(
John Wiley and Sons
,
West Sussex, UK
,
2009
), Vol. 2, Chap. 42, pp.
791
809
.
30.
S. J.
Lee
and
H.
Sohn
, “
Active self-sensing scheme development for structural health monitoring
,”
Smart Mater. Struct.
15
,
1734
1746
(
2006
).
31.
S.
Quek
,
D.
Almond
,
L.
Nelson
, and
T.
Barden
, “
A novel and robust thermal wave signal reconstruction technique for defect detection in lock-in thermography
,”
Meas. Sci. Technol.
16
,
1223
1233
(
2005
).
You do not currently have access to this content.