The acoustic properties of kelp forests are not well known, but are of interest for the development of environmental remote sensing applications. This study examined the low-frequency (0.2–4.5 kHz) acoustic properties of three species of kelp (Macrocystis pyrifera, Egregia menziessi, and Laminaria solidungula) using a one-dimensional acoustic resonator. Acoustic observations and measurements of kelp morphology were then used to test the validity of Wood's multi-phase medium model in describing the acoustic behavior of the kelp. For Macrocystis and Egregia, the two species of kelp possessing pneumatocysts, the change in sound speed was highly dependent on the volume of free air contained in the kelp. The volume of air alone, however, was unable to predict the effective sound speed of the multi-phase medium using a simple two-phase (air + water) form of Wood's model. A separate implementation of this model (frond + water) successfully yielded the acoustic compressibility of the frond structure for each species (Macrocystis = 1.39 ± 0.82 × 10−8 Pa−1; Egregia = 2.59 ± 5.75 × 10−9 Pa−1; Laminaria = 8.65 ± 8.22 × 10−9 Pa−1). This investigation demonstrates that the acoustic characteristics of kelp are species-specific, biomass-dependent, and differ between species with and without pneumatocyst structures.

1.
C. D. G.
Harley
,
A. R.
Hughes
,
K. M.
Hultgren
,
B. G.
Miner
,
C. J. B.
Thornber
,
L. F.
Rodriguez
,
L.
Tomanek
, and
S. L.
Williams
, “
The impacts of climate change in coastal marine systems
,”
Ecol. Lett.
9
,
228
241
(
2006
).
2.
P. K.
Dayton
, “
Ecology of kelp communities
,”
Annu. Rev. Ecol. Syst.
16
,
215
245
(
1985
).
3.
L. E.
Daysher
, “
Evaluation of remote sensing techniques for monitoring giant kelp populations
,”
Hydrobiologia
260
,
307
312
(
1993
).
4.
K.
Britton-Simmons
,
J. E.
Eckman
, and
D. O.
Duggins
, “
Effects of tidal currents and tidal stage on estimates of bed size in the kelp Nereocystis luetkeana
,”
Mar. Ecol.: Prog. Ser.
355
,
95
105
(
2008
).
5.
M. S.
Stekoll
,
L. E.
Deysher
and
M.
Hess
, “
A remote sensing approach to estimating harvestable kelp biomass
,”
J. Appl. Phycol.
18
,
323
334
(
2006
).
6.
K. C.
Cavanaugh
,
D. A.
Siegel
,
B. P.
Kinlan
, and
D. C.
Reed
, “
Scaling giant kelp field measurements to regional scales using satellite observations
,”
Mar. Ecol. Prog. Ser.
403
,
13
27
(
2010
).
7.
B. M.
Riegl
,
R. P.
Moyer
,
L. J.
Morris
,
R. W.
Virnstein
, and
S. J.
Purkis
, “
Distribution and seasonal biomass of drift macroalgae in the Indian River Lagoon (Florida, USA) estimated with acoustic seafloor classification (QTCview, Echoplus)
,”
J. Exp. Mar. Biol. Ecol.
326
,
89
104
(
2005
).
8.
V.
Quintino
,
R.
Freitas
,
R.
Mamede
,
F.
Ricardo
,
A. M.
Rodrigues
,
J.
Mota
,
A.
Perez-Ruzafa
, and
C.
Marcos
, “
Remote sensing of underwater vegetation using single-beam acoustics
,”
ICES J. Mar. Sci.
67
,
594
605
(
2009
).
9.
V.
Meleder
,
J.
Populus
,
B.
Guillamont
,
T.
Perrot
, and
P.
Mouquet
, “
Predictive modeling of seabed habitats: Case study of subtidal kelp forests on the coast of Brittany, France
,”
Mar. Biol.
157
,
1525
1541
(
2010
).
10.
R. S.
Grove
,
K.
Zabloudil
,
T.
Norall
, and
L.
Deysher
, “
Effects of El Niño events on natural kelp beds and artificial reefs in southern California
,”
ICES J. Mar. Sci.
59
,
330
337
(
2002
).
11.
C.
McGonigle
,
J. H.
Grabowski
,
C. J.
Brown.
T. C.
Weber
, and
R.
Quinn
, “
Detection of deep water benthic macroalgae using image-based classification techniques on multibeam scatter at Cashes Ledge, Gulf of Maine, USA
,”
Estuarine Coast. Shelf. Sci.
91
,
87
101
(
2011
).
12.
K.
Minami
,
H.
Yasuma
,
N.
Tojo
,
S.
Fukui
,
Y.
Ito
,
T.
Nobetsu
, and
K.
Miyashita
, “
Estimation of kelp forest, Laminaria spp., distributions in coastal waters of the Shiretoko Peninsula, Hokkaido, Japan, using echosounders and geostatistical analysis
,”
Fish Sci.
76
,
729
736
(
2010
).
13.
H.
van Rein
,
C. J.
Brown
,
R.
Quinn
,
J.
Breen
, and
D.
Schoeman
, “
An evaluation of acoustic seabed classification techniques for marine biotope monitoring over broad scales (>1 km2) and mesoscales (10 m2–1 km2)
,”
Estuarine Coast. Shelf Sci.
93
,
336
349
(
2011
).
14.
P. S.
Wilson
and
K. H.
Dunton
, “
Laboratory investigation of the acoustic response of seagrass tissue in the frequency band of 0.5–2.5 kHz
,”
J. Acoust. Soc. Am.
125
,
1951
1959
(
2009
).
15.
A. B.
Wood
,
A Textbook of Sound
, 1st ed. (
Macmillan
,
New York
,
1930
).
16.
R.
Paternoster
,
R.
Brame
,
P.
Mazerolle
, and
A.
Piquero
, “
Using the correct statistical test for the equality of regression coefficients
,”
Criminology
36
,
859
866
(
1988
).
17.
C. J.
Wilson
,
P. S.
Wilson
, and
K. H.
Dunton
, “
Seagrass leaves in 3-D: Using computed tomography and low-frequency acoustics to investigate the material properties of seagrass tissue
,”
J. Exp. Mar. Biol. Ecol.
35
,
128
134
(
2010
).
18.
T. K.
Stanton
,
D.
Chu
, and
P. H.
Wiebe
, “
Acoustic scattering characteristics of several zooplankton groups
,”
ICES J. Mar. Sci.
53
,
289
295
(
1996
).
19.
T. K.
Stanton
,
D.
Chu
,
P. H.
Wiebe
,
L. V.
Martin
, and
R. L.
Eastwood
, “
Sound scattering by several zooplankton groups. I. Experimental determination of dominant scattering mechanisms
,”
J. Acoust. Soc. Am.
103
,
225
235
(
1998
).
20.
T. K.
Stanton
,
D.
Chu
, and
P. H.
Wiebe
, “
Sound scattering by several zooplankton groups. II. Scattering models
,”
J. Acoust. Soc. Am.
103
,
236
253
(
1998
).
21.
J. D.
Warren
,
T. K.
Stanton
,
M. C.
Benfield
,
P. H.
Wiebe
,
D.
Chu
, and
M.
Sutor
, “
In situ measurements of acoustic target strengths of gas-bearing siphonophores
,”
ICES J. Mar. Sci.
58
,
740
749
(
2001
).
22.
M. V.
Trevarrow
,
D. L.
Mackas
, and
M. C.
Benfield
, “
Comparison of multifrequency acoustic and in situ measurements of zooplankton abundances in Knight Inlet, British Columbia
,”
J. Acoust. Soc. Am.
117
,
3574
3588
(
2005
).
You do not currently have access to this content.