The energy flux formulation of waveguide propagation is closely related to the incoherent mode sum, and its simplicity has led to development of efficient computational algorithms for reverberation and target echo strength, but it lacks the effects of convergence or modal interference. By starting with the coherent mode sum and rejecting the most rapid interference but retaining beats on a scale of a ray cycle distance it is shown that convergence can be included in a hybrid formulation requiring minimal extra computation. Three solutions are offered by evaluating the modal intensity cross terms using Taylor expansions. In the most efficient approach the double summation of the cross terms is reduced to a single numerical sum by solving the other summation analytically. The other two solutions are a local range average and a local depth average. Favorable comparisons are made between these three solutions and the wave model Orca with, and without, spatial averaging in an upward refracting duct. As a by-product, it is shown that the running range average is very close to the mode solution excluding its fringes, given a relation between averaging window size and effective number of modes which, in turn, is related to the waveguide invariant.

1.
Baggeroer
,
A. B.
,
Scheer
,
E. K.
,
Heaney
,
K.
,
D'Spain
,
G.
,
Worcester
,
P.
, and
Dzieciuch
,
M.
(
2010
). “
Reliable acoustic path and convergence zone bottom interaction in the Philippine Sea 09 Experiment (A)
,”
J. Acoust. Soc. Am.
128
,
2385
.
2.
Beilis
,
A.
(
1983
). “
Convergence zone positions via ray-mode theory
,”
J. Acoust. Soc. Am.
74
,
171
180
.
3.
Brekhovskikh
,
L.
, and
Lysanov
,
Yu.
(
2003
).
Fundamentals of Ocean Acoustics
, 3rd ed. (
Springer
,
New York
), p.
129
.
4.
Chuprov
,
S. D.
(
1982
). “
Interference structure of a sound field in a layered ocean
,” in
Ocean Acoustics, Current Status
, edited by
L. M.
Brekhovskikh
and
I. B.
Andreyeva
(
Nauka
,
Moscow
), pp.
71
91
, and (Joint Publications Research Service, Washington, DC, 1985), pp. 88–111.
5.
Collins
,
M. D.
(
1993
). “
A split-step Padé solution for the parabolic equation method
,”
J. Acoust. Soc. Am.
93
,
1736
1742
.
6.
DiNapoli
,
F. R.
, and
Deavenport
,
R. L.
(
1979
). “
Numerical models of underwater acoustic propagation
,” in
Ocean Acoustics
, edited by
J. A.
deSanto
(
Springer-Verlag
,
Berlin
), pp.
79
157
.
7.
Felsen
,
L. B.
(
1981
). “
Hybrid ray-mode fields in inhomogeneous waveguide ducts
,”
J. Acoust. Soc. Am.
69
,
352
361
.
8.
Ferla
,
C. M.
,
Porter
,
M. B.
, and
Jensen
,
F. B.
(
1993
). “
C-SNAP: Coupled SACLANTCEN normal mode propagation loss model
,” Memo. Rep. No. SM-274,
SACLANT Undersea Research Center
, La Spezia, Italy.
9.
Harrison
,
C. H.
(
2003
). “
Closed-form expressions for reverberation and signal-excess with mode-stripping and Lambert's law
,”
J. Acoust. Soc. Am.
114
,
2744
2756
.
10.
Harrison
,
C. H.
(
2005a
). “
Closed form bistatic reverberation and target echoes with variable bathymetry and sound speed
,”
IEEE J. Oceanic Eng.
30
,
660
675
.
11.
Harrison
,
C. H.
(
2005b
). “
Fast bistatic signal-to-reverberation-ratio calculation
,”
J. Comput. Acoust.
13
,
317
340
.
12.
Harrison
,
C. H.
(
2011a
). “
Adiabatic reverberation and target echo mode incoherent sum: Artemis
,” NATO Undersea Res. Cent. Rep. NURC-FR-2011-009,
NATO Undersea Research Centre
, La Spezia, Italy, November 2011.
13.
Harrison
,
C. H.
(
2011b
). “
The relation between the waveguide invariant, multipath impulse response, and ray cycles
,”
J. Acoust. Soc. Am.
129
,
2863
2877
.
14.
Harrison
,
C. H.
(
2012a
). “
A relation between multipath group velocity, mode number, and ray cycle distance
,”
J. Acoust. Soc. Am.
132
,
48
55
.
15.
Harrison
,
C. H.
(
2012b
). “
Retrieving ray convergence in a flux-like formulation
,” Tech. Rep. CMRE-FR-2012-006,
Center for Maritime Research and Experimentation
, Centre for Maritime Research and Experimentations, La Spezia, Italy, October 2012.
16.
Harrison
,
C. H.
, and
Ainslie
,
M. A.
(
2010
). “
Fixed time versus fixed range reverberation calculation: Analytical solution
,”
J. Acoust. Soc. Am.
128
,
28
38
.
17.
Harrison
,
C. H.
, and
Nielsen
,
P. L.
(
2007
). “
Multipath pulse shape in shallow water: Theory and simulation
,”
J. Acoust. Soc. Am.
121
,
1362
1373
.
18.
Haskell
,
N. A.
(
1951
). “
Asymptotic approximation for the normal modes in sound channel wave propagation
,”
J. Appl. Phys.
22
,
157
168
.
19.
Jensen
,
F. B.
,
Kuperman
,
W. A.
,
Porter
,
M. B.
, and
Schmidt
,
H.
(
1994
).
Computational Ocean Acoustics
(
AIP
,
New York
), pp.
155
185
.
20.
Morse
,
P. M.
, and
Feshbach
,
H.
(
1953
).
Methods of Theoretical Physics
(
McGraw-Hill
,
New York
), pp.
1092
1100
.
23.
Tolstoy
,
I.
, and
Clay
,
C. S.
(
1987
).
Ocean Acoustics: Theory and Experiment in Underwater Sound
(
AIP
,
New York
), pp.
145
150
.
24.
Urick
,
R. J.
(
1967
).
Principles of Underwater Sound
(
McGraw-Hill
,
New York
), pp.
151
152
.
25.
Weston
,
D. E.
(
1959
). “
Guided propagation in a slowly varying medium
,”
Proc. Phys. Soc. Lond.
73
,
365
384
.
26.
Weston
,
D. E.
(
1960
). “
A Moiré fringe analog of sound propagation in shallow water
,”
J. Acoust. Soc. Am.
32
,
647
654
.
27.
Weston
,
D. E.
(
1980a
). “
Acoustic flux formulas for range-dependent ocean ducts
,”
J. Acoust. Soc. Am.
68
,
269
281
.
28.
Weston
,
D. E.
(
1980b
). “
Acoustic flux methods for oceanic guided waves
,”
J. Acoust. Soc. Am.
68
,
287
296
.
29.
Weston
,
D. E.
(
1980c
). “
Wave-theory peaks in range-averaged channels of uniform sound velocity
,”
J. Acoust. Soc. Am.
68
,
282
286
.
30.
Westwood
,
E. K.
,
Tindle
,
C. T.
,
Chapman
,
N. R.
(
1996
). “
A normal mode model for acousto-elastic ocean environments
,”
J. Acoust. Soc. Am.
100
,
3631
3645
.
31.
Zhou
,
J. X.
(
1980
). “
The analytical method of angular power spectrum, range and depth structure of echo-reverberation ratio in shallow water sound field
,”
Acta Acust.
5
,
86
99
(in Chinese).
You do not currently have access to this content.