The paper describes an approximate but rather general derivation of the acoustic threshold for a subharmonic component to be possible in the sound scattered by an insonified gas bubble. The general result is illustrated with several specific models for the mechanical behavior of the surface coating of bubbles used as acoustic contrast agents. The approximate results are found to be in satisfactory agreement with fully non-linear numerical results in the literature. The amplitude of the first harmonic is also found by the same method. A fundamental feature identified by the analysis is that the subharmonic threshold can be considerably lowered with respect to that of an uncoated free bubble if the mechanical response of the coating varies rapidly in the neighborhood of certain specific values of the bubble radius, e.g., because of buckling.

1.
Brenner
,
M.
,
Hilgenfeldt
,
S.
, and
Lohse
,
D.
(
2002
). “
Single-bubble sonoluminescence
,”
Rev. Mod. Phys.
74
,
425
484
.
2.
Burns
,
P. N.
,
Wilson
,
S. R.
, and
Simpson
,
D. H.
(
2000
). “
Pulse inversion imaging of liver blood flow: Improved method for characterizing focal masses with microbubble contrast
,”
Invest. Radiol.
35
,
58
71
.
3.
Chomas
,
J.
,
Dayton
,
P.
,
May
,
D.
, and
Ferrara
,
K.
(
2002
). “
Nondestructive subharmonic imaging
,”
IEEE Trans. Ultrason. Ferroelect. Freq. Contr.
49
,
883
892
.
4.
Church
,
C. C.
(
1995
). “
The effects of an elastic solid-surface layer on the radial pulsations of gas bubbles
,”
J. Acoust. Soc. Am.
97
,
1510
1521
.
5.
De Santis
,
P.
,
Sette
,
D.
, and
Wanderlingh
,
F.
(
1967
). “
Cavitation detection—The use of the subharmonic
,”
J. Acoust. Soc. Am.
42
,
514
516
.
6.
Eller
,
A.
, and
Flynn
,
H. G.
(
1969
). “
Generation of subharmonics of order one-half by bubbles in a sound field
,”
J. Acoust. Soc. Am.
46
,
722
727
.
7.
Engquist
,
B.
,
Tornberg
,
A.-K.
, and
Tsai
,
R.
(
2005
). “
Discretization of Dirac delta functions in level set methods
,”
J. Comput. Phys.
207
,
28
51
.
8.
Faez
,
T.
,
Emmer
,
M.
,
Docter
,
M.
,
Sijl
,
J.
,
Versluis
,
M.
, and
de Jong
,
N.
(
2011
). “
Characterizing the subharmonic response of phospholipid-coated microbubbles for carotid imaging
,”
Ultrasound Med. Biol.
37
,
958
970
.
9.
Frinking
,
P. J. A.
,
Gaud
,
E.
,
Brochot
,
J.
, and
Arditi
,
M.
(
2010
). “
Subharmonic scattering of phospholipid-shell microbubbles at low acoustic pressure amplitudes
,”
IEEE Trans. Ultrason. Ferroelect. Freq. Contr.
57
,
1762
1771
.
10.
Goertz
,
D. E.
,
Frijlink
,
M. E.
,
Tempel
,
D.
,
Gisolf
,
A.
,
Krams
,
R.
,
de Jong
,
N.
, and
van der
Steen
A. F. W.
(
2007
). “
Subharmonic contrast intravascular ultrasound for vasa vasorum imaging
,”
Ultrasound Med. Biol.
33
,
1859
1872
.
11.
Hoff
,
L.
,
Sontum
,
P. C.
, and
Hovem
,
J. M.
(
2000
). “
Oscillations of polymeric microbubbles: Effect of the encapsulating shell
,”
J. Acoust. Soc. Am.
107
,
2272
2280
.
12.
Katiyar
,
A.
, and
Sarkar
,
K.
(
2011
). “
Excitation threshold for subharmonic generation from contrast microbubbles
,”
J. Acoust. Soc. Am.
130
,
3137
3147
.
13.
Marmottant
,
P.
,
van der
Meer
,
D.
,
Emmer
,
M.
,
Versluis
,
M.
,
de Jong
,
N.
,
Hilgenfeldt
,
S.
, and
Lohse
,
D.
(
2005
). “
A model for large-amplitude oscillations of coated bubbles accounting for buckling and rupture
,”
J. Acoust. Soc Am.
118
,
3499
3505
.
14.
Neppiras
,
E. A.
(
1969a
). “
Subharmonic and other low-frequency emission from bubbles in sound-irradiated liquids
,”
J. Acoust. Soc. Am.
46
,
587
601
.
15.
Neppiras
,
E. A.
(
1969b
). “
Subharmonic and other low-frequency signals from soundirradiated liquids
,”
J. Sound Vib.
10
,
176
186
.
16.
Neppiras
,
E. A.
, and
Coakley
,
W. T.
(
1976
). “
Acoustic cavitation in a focused field in water at 1 MHz
,”
J. Sound Vib.
45
,
341
373
.
17.
Peskin
,
C. S.
(
1977
). “
Numerical analysis of blood flow in the heart
,”
J. Comput Phys.
25
,
220
252
.
18.
Prosperetti
,
A.
(
1974
). “
Oscillations of gas bubbles in liquids: Steady-state solutions
,”
J. Acoust. Soc. Am.
56
,
878
885
.
19.
Prosperetti
,
A.
(
1976
). “
Subharmonics and ultraharmonics in the forced oscillations of weakly nonlinear systems
,”
Am. J. Phys.
44
,
548
554
.
20.
Prosperetti
,
A.
(
1977
). “
Application of the subharmonic threshold to the measurement of the damping of oscillating gas bubbles
,”
J. Acoust. Soc. Am.
61
,
11
16
.
21.
Prosperetti
,
A.
(
1991
). “
The thermal behaviour of oscillating gas bubbles
,”
J. Fluid Mech.
222
,
587
616
.
22.
Sarkar
,
K.
,
Shi
,
W. T.
,
Chatterjee
,
D.
, and
Forsberg
,
F.
(
2005
). “
Characterization of ultrasound contrast microbubbles using in vitro experiments and viscous and viscoelastic interface models for encapsulation
,”
J. Acoust. Soc. Am.
118
,
539
550
.
23.
Shankar
,
P. M.
,
Krishna
,
P. D.
, and
Newhouse
,
V. L.
(
1998
). “
Advantages of subharmonic over second harmonic backscatter for contrast-to-tissue echo enhancement
,”
Ultrasound Med. Biol.
24
,
395
399
.
24.
Shankar
,
P. M.
,
Krishna
,
P. D.
, and
Newhouse
,
V. L.
(
1999
). “
Subharmonic backscattering from ultrasound contrast agents
,”
J. Acoust. Soc. Am.
106
,
2101
2110
.
25.
Sijl
,
J.
,
Dollet
,
B.
,
Overvelde
,
M.
,
Garbin
,
V.
,
Rozendal
,
T.
,
de Jong
,
N.
,
Lohse
,
D.
, and
Versluis
,
M.
(
2010
). “
Subharmonic behavior of phospholipid-coated ultrasound contrast agent microbubbles
,”
J. Acoust. Soc. Am.
128
,
3239
3252
.
26.
Towers
,
J. D.
(
2007
). “
Two methods for discretizing a delta function supported on a level set
,”
J. Comput. Phys.
220
,
915
931
.
You do not currently have access to this content.