Existing secondary-edge-source methods based on the Biot–Tolstoy solution for diffraction from an infinite wedge compute multiple-order diffraction by cascading the integration over secondary sources used to determine first-order diffraction from the edge. It is demonstrated here that this approach errs in some important cases because it neglects slope-diffraction contributions. This error is illustrated by considering the case of an infinite slit in a thin, hard screen. Comparisons with measurements for this case and analytical solutions for the case of a circular aperture in a thin, hard screen are used as a basis to gauge the magnitude of the error.

1.
M. A.
Biot
and
A.
Tolstoy
, “
Formulation of wave propagation in infinite media by normal coordinates with application to diffraction
,”
J. Acoust. Soc. Am.
29
,
381
391
(
1957
).
2.
H.
Medwin
, “
Shadowing by finite noise barriers
,”
J. Acoust. Soc. Am.
69
,
1060
1064
(
1981
).
3.
H.
Medwin
,
E.
Childs
, and
G. M.
Jebsen
, “
Impulse studies of double diffraction: A discrete Huygens interpretation
,”
J. Acoust. Soc. Am.
72
,
1005
1013
(
1982
).
4.
U. P.
Svensson
,
R. I.
Fred
, and
J.
Vanderkooy
, “
An analytic secondary source model of edge diffraction impulse responses
,”
J. Acoust. Soc. Am.
106
,
2331
2344
(
1999
).
5.
U. P.
Svensson
,
P. T.
Calamia
, and
S.
Nakanishi
, “
Frequency-domain edge diffraction for finite and infinite edges
,”
Acta Acust. Acust.
95
,
568
572
(
2009
).
6.
R. S.
Keiffer
,
J. C.
Novarini
, and
G. V.
Norton
, “
The impulse response of an aperture: Numerical calculations within the framework of the wedge assemblage method
,”
J. Acoust. Soc. Am.
95
,
3
12
(
1994
).
7.
K.
Schwarzschild
, “
Die Beugung und Polarisation des Lichts durch einen Spalt. I” (“The diffraction and polarization of light through a slit. I
”),
Math. Ann.
55
,
177
247
(
1902
);
see also
B. B.
Baker
and
E. T.
Copson
,
The Mathematical Theory of Huygens' Principle
, 2nd ed. (
Oxford
,
New York
,
1950
), pp.
177
181
.
8.
E. N.
Fox
, “
The diffraction of two-dimensional sound pulses incident on an infinite uniform slit in a perfectly reflecting screen
,”
Philos. Trans. R. Soc. London
242
,
1
32
(
1949
).
9.
J. B.
Keller
, “
Diffraction by an aperture
,”
J. Appl. Phys.
28
,
426
444
(
1957
).
10.
S. N.
Karp
and
J. B.
Keller
, “
Multiple-order diffractions by an aperture in a hard screen
,”
Opt. Acta
8
,
61
72
(
1961
).
11.
M.
Yuzawa
, “
Diffraction of spherical wave at a slit and an aperture in a plane screen
,”
J. Acoust. Soc. Jpn.
38
,
755
763
(
1982
) (in Japanese).
12.
C. J.
Bouwkamp
, “
Diffraction theory
,”
Rep. Prog. Phys.
17
,
35
100
(
1954
).
13.
J. E.
Summers
, “
Reverberant acoustic energy in auditoria that comprise systems of coupled rooms
,” Ph. D. dissertation,
Rensselaer Polytech. Inst.
, Troy, NY,
2003
, Chap. 9, pp.
244
265
.
14.
G.
Kristensson
and
P. C.
Waterman
, “
The T matrix for acoustic and electromagnetic scattering by circular disks
,”
J. Acoust. Soc. Am.
72
,
1612
1625
(
1982
).
15.
A.
Asheim
and
U. P.
Svensson
, “
An integral equation formulation for the diffraction from convex plates and polyhedra
,” Technical Report, Department of Computer Science, Katholieke Universiteit Leuven, Leuven, Belgium, March
2012
.
16.
G. V.
Norton
,
J. C.
Novarini
, and
R. S.
Keiffer
, “
An evaluation of the Kirchhoff approximation in predicting the axial impulse response of hard and soft disks
,”
J. Acoust. Soc. Am.
93
,
3049
3056
(
1993
).
You do not currently have access to this content.