Guided waves in plates, known as Lamb waves, are characterized by complex, multimodal, and frequency dispersive wave propagation, which distort signals and make their analysis difficult. Estimating these multimodal and dispersive characteristics from experimental data becomes a difficult, underdetermined inverse problem. To accurately and robustly recover these multimodal and dispersive properties, this paper presents a methodology referred to as sparse wavenumber analysis based on sparse recovery methods. By utilizing a general model for Lamb waves, waves propagating in a plate structure, and robust 1 optimization strategies, sparse wavenumber analysis accurately recovers the Lamb wave's frequency-wavenumber representation with a limited number of surface mounted transducers. This is demonstrated with both simulated and experimental data in the presence of multipath reflections. With accurate frequency-wavenumber representations, sparse wavenumber synthesis is then used to accurately remove multipath interference in each measurement and predict the responses between arbitrary points on a plate.

1.
P.
Cawley
, “
Practical long range guided wave inspection—Managing complexity
,” in
Proceedings of the Review of Progress in Quantitative Nondestructive Evaluation
, Bellingham, WA (
2003
), Vol.
22
, pp.
22
40
.
2.
R. L.
Weaver
and
O. I.
Lobkis
, “
Temperature dependence of diffuse field phase
,”
Ultrasonics
38
,
491
494
(
2000
).
3.
J. B.
Harley
and
J. M. F.
Moura
, “
Scale transform signal processing for optimal ultrasonic temperature compensation
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
59
,
2226
2236
(
2012
).
4.
A.
Croxford
,
P.
Wilcox
,
B.
Drinkwater
, and
G.
Konstantinidis
, “
Strategies for guided-wave structural health monitoring
,”
Proc. R. Soc. London, Ser. A
463
,
2961
2981
(
2007
).
5.
J. E.
Michaels
, “
Detection, localization and characterization of damage in plates with an in situ array of spatially distributed ultrasonic sensors
,”
Smart Mater. Struct.
17
,
035035
(
2008
).
6.
A. J.
Croxford
,
J.
Moll
,
P. D.
Wilcox
, and
J. E.
Michaels
, “
Efficient temperature compensation strategies for guided wave structural health monitoring
,”
Ultrasonics
50
,
517
528
(
2010
).
7.
P. D.
Wilcox
, “
A rapid signal processing technique to remove the effect of dispersion from guided wave signals
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
50
,
419
427
(
2003
).
8.
D.
Donoho
, “
Compressed sensing
,”
IEEE Trans. Inf. Theory
52
,
1289
1306
(
2006
).
9.
E. J.
Candès
and
M. B.
Wakin
, “
An introduction to compressive sampling
,”
IEEE Signal Process. Mag.
25
,
21
30
(
2008
).
10.
M. A.
Davenport
,
M. F.
Duarte
,
Y. C.
Eldar
, and
G.
Kutyniok
,
Introduction to Compressed Sensing
, edited by
Y. C.
Eldar
and
G.
Kutyniok
(
Cambridge University Press
,
Cambridge
,
2012
), Chap. 1, pp.
1
68
.
11.
E. J.
Candès
,
J. K.
Romberg
, and
T.
Tao
, “
Stable signal recovery from incomplete and inaccurate measurements
,”
Commun. Pure Appl. Math.
59
,
1207
1223
(
2006
).
12.
E. J.
Candès
, “
The restricted isometry property and its implications for compressed sensing
,”
C. R. Math
346
,
589
592
(
2008
).
13.
D.
Alleyne
, “
A two-dimensional Fourier transform method for the measurement of propagating multimode signals
,”
J. Acoust. Soc. Am.
89
,
1159
(
1991
).
14.
W.
Gao
,
C.
Glorieux
, and
J.
Thoen
, “
Laser ultrasonic study of Lamb waves: determination of the thickness and velocities of a thin plate
,”
Int. J. Eng. Sci.
41
,
219
228
(
2003
).
15.
W. H.
Prosser
,
M. D.
Seale
, and
B. T.
Smith
, “
Time-frequency analysis of the dispersion of Lamb modes
,”
J. Acoust. Soc. Am.
105
,
2669
2676
(
1999
).
16.
M.
Niethammer
,
L.
Jacobs
,
J.
Qu
, and
J.
Jarzynski
, “
Time-frequency representation of Lamb waves using the reassigned spectrogram
,”
J. Acoust. Soc. Am.
107
,
L19
L24
(
2000
).
17.
F.
Li
,
G.
Meng
,
L.
Ye
,
Y.
Lu
, and
K.
Kageyama
, “
Dispersion analysis of Lamb waves and damage detection for aluminum structures using ridge in the time-scale domain
,”
Meas. Sci. Technol.
20
,
095704
(
2009
).
18.
A.
Raghavan
and
C. E. S.
Cesnik
, “
Guided-wave signal processing using chirplet matching pursuits and mode correlation for structural health monitoring
,”
Smart Mater. Struct.
16
,
355
366
(
2007
).
19.
W.
Yuemin
, “
Guided waves modes identification in pipes detection by application of the matching pursuit method
,” in
IEEE International Conference on Electronic Measurement & Instruments
, Chengdu (
2011
), Vol.
4
, pp.
50
53
.
20.
J. S.
Hall
and
J. E.
Michaels
, “
A model-based approach to dispersion and parameter estimation for ultrasonic guided waves
,”
J. Acoust. Soc. Am.
127
,
920
930
(
2010
).
21.
J. S.
Hall
and
J. E.
Michaels
, “
Model-based parameter estimation for characterizing wave propagation in a homogeneous medium
,”
Inverse Probl.
27
,
035002
(
2011
).
22.
J. L.
Rose
,
Ultrasonic Waves in Solid Media
, 1st ed. (
Cambridge University Press
,
Cambridge
,
2004
), Chap. 8, pp.
101
126
.
23.
K. F.
Graff
,
Wave Motion in Elastic Solids
, 1st ed. (
Dover
,
New York
,
1991
), Chap. 8, pp.
458
463
.
24.
F. W.
Olver
and
L.
Maximon
,
NIST Handbook of Mathematical Functions
, edited by
F. W.
Olver
,
D. W.
Lozier
,
R. F.
Boisvert
, and
C. W.
Clark
(
Cambridge University Press
,
Cambridge
,
2010
), Chap. 10, pp.
217
225
.
25.
A.
Raghavan
, “
Guided-wave structural health monitoring
,” Ph.D. thesis,
The University of Michigan
, Ann Arbor,
2007
.
26.
X. P.
Qing
,
H.-L.
Chan
,
S. J.
Beard
,
T. K.
Ooi
, and
S. A.
Marotta
, “
Effect of adhesive on the performance of piezoelectric elements used to monitor structural health
,”
Int. J. Adhes. Adhes.
26
,
622
628
(
2006
).
27.
D.
Donoho
,
M.
Elad
, and
V.
Temlyakov
, “
Stable recovery of sparse overcomplete representations in the presence of noise
,”
IEEE Trans. Inf. Theory
52
,
6
18
(
2006
).
28.
S. S.
Chen
,
D. L.
Donoho
, and
M. A.
Saunders
, “
Atomic decomposition by basis pursuit
,”
SIAM J. Sci. Comput.
43
,
129
159
(
1998
).
29.
S.
Boyd
and
L.
Vandenberghe
,
Convex Optimization
(
Cambridge University Press
,
Cambridge
,
2009
), p.
716
.
30.
D.
Donoho
and
X.
Huo
, “
Uncertainty principles and ideal atomic decomposition
,”
IEEE Trans. Inf. Theory
47
,
2845
2862
(
2001
).
31.
J. F.
Claerbout
, “
Robust modeling with erratic data
,”
Geophysics
38
,
826
844
(
1973
).
32.
P. R.
Gill
,
A.
Wang
, and
A.
Molnar
, “
The in-crowd algorithm for fast basis pursuit denoising
,”
IEEE Trans. Signal Process.
59
,
4595
4605
(
2011
).
33.
D.
Malioutov
,
M.
Cetin
, and
A.
Willsky
, “
Homotopy continuation for sparse signal representation
,” in
Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing
(
IEEE
,
Philadelphia, PA
,
2005
), Vol.
5
, pp.
733
736
.
34.
E.
van den Berg
and
M. P.
Friedlander
, “
Probing the Pareto frontier for basis pursuit solutions
,”
SIAM J. Sci. Comput.
31
,
890
912
(
2009
).
35.
J.
Blanchard
,
C.
Cartis
, and
J.
Tanner
, “
Decay properties of restricted isometry constants
,”
IEEE Signal Process. Lett.
16
,
572
575
(
2009
).
36.
S.
Kunis
and
H.
Rauhut
, “
Random sampling of sparse trigonometric polynomials II. Orthogonal matching pursuit versus basis pursuit
,”
Found. Comput. Math.
8
,
737
763
(
2008
).
37.
H.
Zou
, “
The adaptive lasso and its oracle properties
,”
J. Am. Stat. Assoc.
101
,
1418
1429
(
2006
).
38.
N.
Meinshausen
and
P.
Bühlmann
, “
High-dimensional graphs and variable selection with the lasso
,”
Ann. Stat.
34
,
1436
1462
(
2006
).
39.
J. B.
Harley
,
A. C.
Schmidt
, and
J. M. F.
Moura
, “
Accurate sparse recovery of guided wave characteristics for structural health monitoring
,” in
Proceedings of the IEEE Ultrasonics Symposium
,
Dresden
(
2012
). In press.
40.
I.
Zorych
and
Z.-H.
Michalopoulou
, “
Particle filtering for dispersion curve tracking in ocean acoustics
,”
J. Acoust. Soc. Am.
124
,
EL45
EL50
(
2008
).
41.
M.
Grant
and
S.
Boyd
, “
Graph implementations for nonsmooth convex programs
,” in
Lecture Notes in Control and Information Sciences
, edited by
V.
Blondel
,
S.
Boyd
, and
H.
Kimura
(
Springer-Verlag
,
Berlin
,
2008
), pp.
95
110
.
42.
M.
Grant
and
S.
Boyd
, “
CVX: Matlab software for disciplined convex programming, version 1.21
” (
2011
) [computer program], http://cvxr.com/cvx/ (Last viewed 9/7/12).
43.
J. E.
Michaels
,
S. J.
Lee
,
J. S.
Hall
, and
T. E.
Michaels
, “
Multi-mode and multi-frequency guided wave imaging via chirp excitations
,” in
Proceedings of SPIE Conference on Health Monitoring of Structural and Biological Systems
,
San Diego, CA
(
2011
), Vol.
7984
, pp.
79840I
79840I
.
44.
R. C.
Gonzalez
and
R. E.
Woods
,
Digital Image Processing
(
Prentice Hall
,
Upper Saddle River, NJ
,
2001
), Chap. 4, pp.
167
191
.
You do not currently have access to this content.