The successful design of a thermoacoustic engine depends on the appropriate description of the processes involved inside the thermoacoustic core (TAC). This is a difficult task when considering the complexity of both the heat transfer phenomena and the geometry of the porous material wherein the thermoacoustic amplification process occurs. An attempt to getting round this difficulty consists in measuring the TAC transfer matrix under various heating conditions, the measured transfer matrices being exploited afterward into analytical models describing the complete apparatus. In this paper, a method based on impedance measurements is put forward, which allows the accurate measurement of the TAC transfer matrix, contrarily to the classical two-load method. Four different materials are tested, each one playing as the porous element allotted inside the TAC, which is submitted to different temperature gradients to promote thermoacoustic amplification. The experimental results are applied to the modeling of basic standing-wave and traveling-wave engines, allowing the prediction of the engine operating frequency and thermoacoustic amplification gain, as well as the optimum choice of the components surrounding the TAC.

1.
G. W.
Swift
,
Thermoacoustics—A Unifying Perspective for Some Engine and Refrigerators
(
Acoustical Society of America
,
Melville, NY
,
2002
),
300
pp.
2.
P.
Ceperley
, “
A pistonless Stirling engine—The traveling wave heat engine
,”
J. Acoust. Soc. Am.
66
(
5
),
1508
1513
(
1979
).
3.
S.
Backhaus
and
G. W.
Swift
, “
A thermoacoustic Stirling heat engine
,”
Nature
399
,
335
338
(
1999
).
4.
W. C.
Ward
and
G. W.
Swift
, “
Design environment for low-amplitude thermoacoustic engines
,”
J. Acoust. Soc. Am.
95
(
6
),
3671
3672
(
1994
).
5.
G.
Penelet
,
S.
Job
,
V.
Gusev
,
P.
Lotton
, and
M.
Bruneau
, “
Dependence of sound amplification on temperature distribution in annular thermoacoustic engines
,”
Acust. Acta Acust.
91
(
3
),
567
577
(
2005
).
6.
H.
Yuan
,
S.
Karpov
, and
A.
Prosperetti
, “
A simplified model for linear and nonlinear processes in thermoacoustic prime movers. Part 2: Nonlinear oscillations
,”
J. Acoust. Soc. Am.
102
(
6
),
3497
3506
(
1997
).
7.
S.
Karpov
and
A.
Prosperetti
, “
A nonlinear model of thermoacoustic devices
,”
J. Acoust. Soc. Am.
112
(
4
),
1431
1444
(
2002
).
8.
M. F.
Hamilton
,
Y. A.
Ilinskii
, and
E. A.
Zabolotskaya
, “
Nonlinear two-dimensional model for thermoacoustic engines
,”
J. Acoust. Soc. Am.
111
(
5
),
2076
2086
(
2002
).
9.
G.
Penelet
,
V.
Gusev
,
P.
Lotton
, and
M.
Bruneau
, “
Experimental and theoretical study of processes leading to steady-state sound in annular thermoacoustic engines
,”
Phys. Rev. E
72
(
1
),
016625
(
2005
).
10.
H.-S.
Roh
,
W. P.
Arnott
,
J. M.
Sabatier
, and
R.
Raspet
, “
Measurement and calculation of acoustic propagation constants in arrays of small air-filled rectangular tubes
,”
J. Acoust. Soc. Am.
89
(
6
),
2617
2624
(
1991
).
11.
G. W.
Swift
and
R. M.
Keolian
, “
Thermoacoustics in pin-array stacks
,”
J. Acoust. Soc. Am.
94
(
2
),
941
943
(
1993
).
12.
L. A.
Wilen
, “
Measurements of thermoacoustic functions for single pores
,”
J. Acoust. Soc. Am.
103
(
3
),
1406
1412
(
1998
).
13.
L. A.
Wilen
, “
Dynamic measurements of the thermal dissipation function of reticulated vitreous carbon
,”
J. Acoust. Soc. Am.
109
(
1
),
179
184
(
2001
).
14.
A.
Petculescu
and
L. A.
Wilen
, “
Lumped-element technique for the measurement of complex density
,”
J. Acoust. Soc. Am.
110
(
4
),
1950
1957
(
2001
).
15.
W. P.
Arnott
,
H. E.
Bass
, and
R.
Raspet
, “
General formulation of thermoacoustics for stacks having arbitrarily shaped pore cross sections
,”
J. Acoust. Soc. Am.
90
(
6
),
3228
3237
(
1991
).
16.
J. A.
Adeff
,
T. J.
Hofler
,
A. A.
Atchley
, and
W. C.
Moss
, “
Measurements with reticulated vitreous carbon stacks in thermoacoustic prime movers and refrigerators
,”
J. Acoust. Soc. Am.
104
(
1
),
32
38
(
1998
).
17.
G.
Petculescu
and
L. A.
Wilen
, “
Thermoacoustics in a single pore with an applied temperature gradient
,”
J. Acoust. Soc. Am.
106
(
2
),
688
694
(
1999
).
18.
H.
Roh
,
R.
Raspet
, and
H. E.
Bass
, “
Parallel capillary-tube-based extension of thermoacoustic theory for random porous media
,”
J. Acoust. Soc. Am.
121
(
3
),
1413
1422
(
2007
).
19.
M.
Guedra
,
G.
Penelet
,
P.
Lotton
, and
J.-P.
Dalmont
, “
Theoretical prediction of the onset of thermoacoustic instability from the experimental transfer matrix of a thermoacoustic core
,”
J. Acoust. Soc. Am.
130
(
1
),
145
152
(
2011
).
20.
H.
Boden
and
M.
Abom
, “
Influence of errors on the two-microphone method for measuring acoustic properties in ducts
,”
J. Acoust. Soc. Am
79
(
2
),
541
549
(
1986
).
21.
M. L.
Munjal
,
Acoustics of Ducts and Mufflers With Application to Exhaust and Ventilation System Design
(
Wiley
,
New York
,
1987
),
352
pp.
22.
H.
Hatori
,
T.
Biwa
, and
T.
Yazaki
, “
How to build a loaded thermoacoustic engine
,”
J. Appl. Phys.
111
,
074905
(
2012
).
23.
J.-P.
Dalmont
, “
Acoustic impedance measurement, Part I: A review
,”
J. Sound Vib.
243
(
3
),
427
439
(
2001
).
24.
J.-P.
Dalmont
, “
Acoustic impedance measurement, Part II: A new calibration method
,”
J. Sound Vib.
243
(
3
),
441
459
(
2001
).
25.
J. C.
Le Roux
,
M.
Pachebat
, and
J. P.
Dalmont
, “
A new impedance sensor for industrial applications
,” in
Acoustics 2012
, Nantes, France (April 23–27,
2012
).
26.
C. A.
Macaluso
and
J. P.
Dalmont
, “
Trumpet with near-perfect harmonicity: Design and acoustic results
,”
J. Acoust. Soc. Am.
129
(
1
),
404
414
(
2011
).
27.
A. A.
Atchley
,
H. E.
Bass
,
T. J.
Hofler
, and
H.
Lin
, “
Study of a thermoacoustic prime-mover below onset of self-oscillations
,”
J. Acoust. Soc. Am.
91
(
2
),
734
743
(
1994
).
28.
A. A.
Atchley
, “
Analysis of the initial buildup of oscillations in a thermoacoustic prime-mover
,”
J. Acoust. Soc. Am.
95
(
3
),
1661
1664
(
1994
).
You do not currently have access to this content.