In this paper, a model of the harp plucking is developed. It is split into two successive time phases, the sticking and the slipping phases, and uses a mechanical description of the human finger's behavior. The parameters of the model are identified through measurements of the finger/string displacements during the interaction. The validity of the model is verified using a configurable and repeatable robotic finger, enhanced with a silicone layer. A parametric study is performed to investigate the influence of the model's parameters on the free oscillations of the string. As a result, a direct implementation of the model produces an accurate simulation of a string response to a given finger motion, as compared to experimental data. The set of parameters that govern the plucking action is divided into two groups: Parameters controlled by the harpist and parameters intrinsic to the plucking. The former group and to a lesser extent the latter highly influence the initial conditions of the string vibrations. The simulations of the string's free oscillations highlight the large impact the model parameters have on the sound produced and therefore allows the understanding of how different players on the same instrument can produce a specific/personal sound quality.

1.
D.
Chadefaux
,
J.-L.
Le Carrou
,
B.
Fabre
, and
L.
Daudet
, “
Experimentally based description of harp plucking
,”
J. Acoust. Soc. Am.
131
(
1
),
844
855
(
2012
).
2.
H.
Penttinen
,
J.
Pakarinen
, and
V.
Välimäki
, “
Model-based sound synthesis of the guqin
,”
J. Acoust. Soc. Am.
120
,
4052
4063
(
2006
).
3.
G.
Derveaux
,
A.
Chaigne
,
P.
Joly
, and
E.
Bécache
, “
Time-domain simulation of a guitar: Model and method
,”
J. Acoust. Soc. Am.
114
,
3368
3383
(
2003
).
4.
K.
Bradley
,
M.-H.
Cheng
, and
V. L.
Stonik
, “
Automated analysis and computationally efficient synthesis of acoustic guitar strings and body
,” in
IEEE Proceedings on Applications of Signal Processing to Audio and Acoustics
(
1995
).
5.
M.
Karjalainen
,
V.
Välimäki
, and
T.
Tolonen
, “
Plucked-string models: From the Karplus-Strong algorithm to digital waveguides and beyond
,”
Comput. Music J.
22
(
3
),
17
32
(
1998
).
6.
J.
Woodhouse
, “
On the synthesis of guitar plucks
,”
Acta Acust. Acust.
90
,
928
944
(
2004
).
7.
G.
Cuzzucoli
and
V.
Lombardo
, “
A physical model of the classical guitar, including the player's touch
,”
Comput. Music J.
23
(
2
),
52
69
(
1999
).
8.
G.
Evangelista
, “
Player-instrument interaction models for digital waveguide synthesis of guitar: Touch and collisions
,”
IEEE Trans. Audio, Speech, Lang. Process.
18
(
4
),
1558
7916
(
2010
).
9.
M.
Pavlidou
, “
A physical model of the string-finger interaction on the classical guitar
,” Ph.D. thesis,
University of Wales
, Cardiff, UK,
1997
.
10.
N. H.
Fletcher
and
T. D.
Rossing
,
The Physics of Musical Instruments
, 2nd ed. (
Springer
,
New York
,
1998
).
11.
J -L.
Le Carrou
,
F.
Gautier
,
F.
Kerjan
, and
J.
Gilbert
, “
The string-finger interaction in the concert harp
,” in
Proceedings of ISMA
,
Barcelona, Spain
(
2007
).
12.
J -L.
Le Carrou
,
E.
Wahlen
,
E.
Brasseur
, and
J.
Gilbert
, “
Two dimensional finger-string interaction in the concert harp
,” in
Proceedings of Acoustics 2008
,
Paris
(
2008
), pp.
1495
1500
.
13.
A.
Izadbakhsh
, “
Dynamics and control of a piano action mechanism
,” Master thesis,
University of Waterloo
, Waterloo, ON, Canada,
2006
.
14.
R. J.
Gulati
and
M. A.
Srinivasan
, “
Determination of mechanical properties of the human fingerpad in vivo using a tactile stimulator
,” RLE Technical Report, Massachusetts Institute of Technology (
1997
).
15.
E. R.
Serina
,
S. D.
Mote
, Jr.
, and
D.
Rempel
, “
Force response of the fingertip pulp to repeated compression—effects of loading rate, loading angle and anthropometry
,”
J. Biomech.
30
(
10
),
1035
1040
(
1997
).
16.
D. T. V.
Pawluk
and
R. D.
Howe
, “
Dynamic lumped element response of the human fingerpad
,”
J. Biomech. Eng.
121
,
178
183
(
1999
).
17.
N.
Nakazawa
,
R.
Ikeura
, and
H.
Inooka
, “
Characteristics of human fingertips in the shearing direction
,”
Biol. Cybern.
82
,
207
214
(
2000
).
18.
F.
Mainardi
and
G.
Spada
, “
Creep, relaxation and viscosity properties for basic fractional models in rheology
,”
Eur. Phys. J. Special Topics
193
,
133
160
(
2011
).
19.
G.
Boyer
,
H.
Zahouani
,
A.
Le Bot
, and
L.
Laquieze
, “
In vivo characterization of viscoelastic properties of human skin using dynamic micro-indentation
,” in
Proceedings of the 29th Annual International Conference of the IEEE EMBS
(
2007
), pp.
4584
4587
.
20.
Q.
Wang
and
V.
Hayward
, “
In vivo biomechanics of the fingerpad skin under tangential traction
,”
J. Biomech.
40
,
851
860
(
2007
).
21.
H.-Y.
Han
and
S.
Kawamura
, “
Analysis of stiffness of human fingertip and comparison with artificial fingers
,” in
Proceedings of IEEE International Conference on Systems, Man and Cybernetics
(
1999
), pp.
800
805
.
22.
D. W.
Marhefka
and
D. E.
Orin
, “
A compliant contact model with nonlinear damping for simulation of robotic systems
,”
IEEE Trans. Syst. Man Cybern., Part A. Syst. Humans
29
(
6
),
566
572
(
1999
).
23.
P.
Tiezzi
and
I.
Kao
, “
Characteristics of contact and limit surface for viscoelastic fingers
,” in
Proceedings of IEEE International Conference on Robotics and Automation
,
Orlando, FL
(
2006
), pp.
1365
1370
.
24.
D. L.
Jindrich
,
Y.
Zhou
,
T.
Becker
, and
J. T.
Dennerlein
, “
Non-linear viscoelastic models predict fingertip pulp force-displacement characteristics during voluntary tapping
,”
J. Biomech.
36
,
497
503
(
2003
).
25.
P. M.
Morse
,
Vibration and Sound
(
McGraw-Hill
,
New York
1948
).
26.
S. E.
Tomlinson
, “
Understanding the friction between human fingers and contacting surfaces
,” Ph.D. thesis,
University of Sheffield
, South Yorkshire, UK (
2009
).
27.
M. J.
Adams
,
B. J.
Briscoe
, and
S. A.
Johnson
, “
Friction and lubricfication of human skin
,”
Tribol. Lett.
26
(
3
),
239
253
(
2007
).
28.
M.
Kwiatkowska
,
S. E.
Franklin
,
C. P.
Hendriks
, and
K.
Kwiatkowski
, “
Friction and deformation behaviour of human skin
,”
Wear
267
,
1264
1273
(
2009
).
29.
R. K.
Sivamani
,
J.
Goodman
,
N. V.
Gitis
, and
H. I.
Maibach
, “
Friction coefficient of skin in real-time
,”
Skin Res. Technol.
9
,
235
239
(
2003
).
30.
A. A.
Koudine
,
M.
Barquins
,
Ph.
Anthoine
,
L.
Aubert
, and
J.-L.
Lévêque
, “
Frictional properties of skin: Proposal of a new approach
,”
Int. J. Cosmet. Sci.
22
,
11
20
(
2000
).
31.
J.-L.
Le Carrou
,
D.
Chadefaux
,
M.-A.
Vitrani
,
S.
Billout
, and
L.
Quartier
, “
DROPIC: A tool for the study of string instruments in playing conditions
,”
Proceedings of Acoustics 12
,
Nantes
,
France
(
2012
), pp.
451
456
.
32.
C.
Valette
, “
The mechanics of vibrating strings
,” in
Mechanics of Musical Instruments
(
Springer-Verlag
,
Vienna
,
1995
), pp.
115
183
.
33.
D.
Chadefaux
,
J.-L.
Le Carrou
,
M.-A.
Vitrani
,
S.
Billout
, and
L.
Quartier
, “
Harp plucking robotic finger
,” in
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Portugal
(
2012
), pp.
4886
4891
.
34.
K.
Levenberg
, “
A method for the solution of certain problems in least squares
,”
Q. Appl. Math.
2
,
164
168
(
1944
).
35.
D.
Marquardt
, “
An algorithm for least-squares estimation of nonlinear parameters
,”
SIAM J. Appl. Math.
11
,
431
441
(
1963
).
36.
A.
Akay
, “
Acoustics of friction
,”
J. Acoustic. Soc. Am.
111
(
4
),
1525
1547
(
2002
).
37.
S.
Derler
and
L. C.
Gerhardt
, “
Tribology of skin: Review and analysis of experimental results for the friction coefficient of human skin
,”
Tribol. Lett.
45
,
1
27
(
2012
).
38.
N. H.
Fletcher
, “
Plucked strings—A review
,”
Catgut Acoust. Soc. Newslett.
26
,
13
17
(
1976
).
39.
A.
Chaigne
and
J.
Kergomard
,
Acoustique des Instruments de Musique (Acoustics of Musical Instruments)
(
Belin
,
Paris
,
2008
).
40.
J. M.
Grey
and
J. W.
Gordon
, “
Perceptual effects of spectral modification on musical timbres
,”
J. Acoust. Soc. Am.
63
(
5
),
1493
1500
(
1978
).
You do not currently have access to this content.