Acoustic channel estimation is an important problem in various applications. Unlike many existing channel estimation techniques that need known probe or training signals, this paper develops a blind multipath channel identification algorithm. The proposed approach is based on the single-input multiple-output model and exploits the sparse multichannel structure. Three sparse representation algorithms, namely, matching pursuit, orthogonal matching pursuit, and basis pursuit, are applied to the blind sparse identification problem. Compared with the classical least squares approach to blind multichannel estimation, the proposed scheme does not require that the channel order be exactly determined and it is robust to channel order selection. Moreover, the ill-conditioning induced by the large delay spread is overcome by the sparse constraint. Simulation results for deconvolution of both underwater and room acoustic channels confirm the effectiveness of the proposed approach.

1.
K. G.
Sabra
,
H.-C.
Song
, and
D. R.
Dowling
, “
Ray-based blind deconvolution in ocean sound channels
,”
J. Acoust. Soc. Am.
127
,
EL42
EL47
(
2010
).
2.
S. H.
Abadi
,
D.
Rouseff
, and
D. R.
Dowling
, “
Blind deconvolution for robust signal estimation and approximate source localization
,”
J. Acoust. Soc. Am.
131
,
2599
2610
(
2012
).
3.
M. K.
Broadhead
,
L. A.
Pflug
, and
R. L.
Field
, “
Use of higher order statistics in source signature estimation
,”
J. Acoust. Soc. Am.
107
,
2576
2585
(
2000
).
4.
H. S.
Anderson
and
M. R.
Gupta
, “
Joint deconvolution and classification with applications to passive acoustic underwater multipath
,”
J. Acoust. Soc. Am.
124
,
2973
2983
(
2008
).
5.
W.-J.
Zeng
,
X.
Jiang
,
X.-L.
Li
, and
X.-D.
Zhang
, “
Deconvolution of sparse underwater acoustic multipath channel with a large time-delay spread
,”
J. Acoust. Soc. Am.
127
,
909
919
(
2010
).
6.
W.
Li
and
J. C.
Preisig
, “
Estimation of rapidly time-varying sparse channels
,”
IEEE J. Ocean. Eng.
32
,
927
939
(
2007
).
7.
W.-J.
Zeng
and
W.
Xu
, “
Fast estimation of doubly spread acoustic channels
,”
J. Acoust. Soc. Am.
131
,
303
317
(
2012
).
8.
M. J.
Roan
,
M. R.
Gramann
,
J. G.
Erling
, and
L. H.
Sibul
, “
Blind deconvolution applied to acoustical systems identification with supporting experimental results
,”
J. Acoust. Soc. Am.
114
,
1988
1996
(
2003
).
9.
P. C.
Mignerey
and
S.
Finette
, “
Multichannel deconvolution of an acoustic transient in an oceanic waveguide
,”
J. Acoust. Soc. Am.
92
,
351
364
(
1992
).
10.
T. C.
Yang
, “
Properties of underwater acoustic communication channels in shallow water
,”
J. Acoust. Soc.
Am.
131
,
129
145
(
2012
).
11.
G.
Xu
,
H.
Liu
,
L.
Tong
, and
T.
Kailath
, “
A least-squares approach to blind channel identification
,”
IEEE Trans. Signal Process.
43
,
2982
2993
(
1995
).
12.
E.
Moulines
,
P.
Duhamel
,
J.
Cardoso
, and
S.
Mayrargue
, “
Subspace methods for the blind identification of multichannel FIR filters
,”
IEEE Trans. Signal Process.
43
,
516
525
(
1995
).
13.
K. I.
Diamantaras
and
T.
Papadimitriou
, “
An efficient subspace method for the blind identification of multichannel FIR systems
,”
IEEE Trans. Signal Process.
56
,
5833
5839
(
2008
).
14.
L.
Tong
,
G.
Xu
, and
T.
Kailath
, “
Blind identification and equalization based on second-order statistics: A time domain approach
,”
IEEE Trans. Inf. Theory
40
,
340
349
(
1994
).
15.
H. H.
Zeng
and
L.
Tong
, “
Connections between the least-squares and the subspace approaches to blind channel estimation
,”
IEEE Trans. Signal Process.
44
,
1593
1596
(
1996
).
16.
K.
Abed-Meraim
,
W.
Qiu
, and
Y.
Hua
, “
Blind system identification
,”
Proc. IEEE
85
,
1310
1322
(
1997
).
17.
S.
Mallat
and
Z.
Zhang
, “
Matching pursuits with time-frequency dictionaries
,”
IEEE Trans. Signal Process.
41
,
3397
3415
(
1993
).
18.
J. A.
Tropp
and
A. C.
Gilbert
, “
Signal recovery from random measurements via orthogonal matching pursuit
,”
IEEE Trans. Inf. Theory
53
,
4655
4666
(
2007
).
19.
S.
Chen
,
D. L.
Donoho
, and
M. A.
Saunders
, “
Atomic decomposition by basis pursuit
,”
SIAM Rev.
43
,
129
159
(
2001
).
20.
E. J.
Candes
,
J.
Romberg
, and
T.
Tao
, “
Stable signal recovery from incomplete and inaccurate measurements
,”
Commun. Pure Appl. Math.
59
,
1207
1223
(
2006
).
21.
E. J.
Candes
,
J.
Romberg
, and
T.
Tao
, “
Stable uncertainty principles: exact signal reconstruction from highly incomplete frequency information
,”
IEEE Trans. Inf. Theory
52
,
489
509
(
2006
).
22.
D.
Youn
,
N.
Ahmed
, and
G.
Carter
, “
On using the LMS algorithm for time delay estimation
,”
IEEE Trans. Acoust., Speech, Signal Process.
41
,
798
801
(
1982
).
23.
P. C.
Ching
and
H. C.
So
, “
Two adaptive algorithms for multipath time delay estimation
,”
IEEE J. Ocean. Eng.
19
,
458
463
(
1994
).
24.
H. C.
So
, “
Analysis of an adaptive algorithm for unbiased multipath time delay estimation
,”
IEEE Trans. Aerospace Electron. Syst.
39
,
777
785
(
2003
).
25.
J.
Allen
and
D.
Berkeley
, “
Image method for efficiently simulating small-room acoustics
,”
J. Acoust. Soc. Am.
65
,
943
950
(
1979
).
26.
E.
Lehmann
and
A.
Johansson
, “
Prediction of energy decay in room impulse responses simulated with an image-source model
,”
J. Acoust. Soc. Am.
124
,
269
277
(
2008
).
You do not currently have access to this content.