One of the primary mechanisms to vary one's vocal frequency is through vocal fold length changes. As stress and deformation are linked to each other, it is hypothesized that the anisotropy in the biomechanical properties of the vocal fold tissue would affect the phonation characteristics. A biomechanical model of vibrational frequency rise during vocal fold elongation is developed which combines an advanced biomechanical characterization protocol of the vocal fold tissue with continuum beam models. Biomechanical response of the tissue is related to a microstructurally informed, anisotropic, nonlinear hyperelastic constitutive model. A microstructural characteristic (the dispersion of collagen) was represented through a statistical orientation function acquired from a second harmonic generation image of the vocal ligament. Continuum models of vibration were constructed based upon Euler–Bernoulli and Timoshenko beam theories, and applied to the study of the vibration of a vocal ligament specimen. From the natural frequency predictions in dependence of elongation, two competing processes in frequency control emerged, i.e., the applied tension raises the frequency while simultaneously shear deformation lowers the frequency. Shear becomes much more substantial at higher modes of vibration and for highly anisotropic tissues. The analysis was developed as a case study based on a human vocal ligament specimen.

1.
H.
Hollien
,
D.
Dew
, and
P.
Philips
, “
Phonational frequency ranges of adults
,”
J. Speech Hear. Res.
14
,
755
760
(
1971
).
2.
I.
Titze
, “
On the relation between subglottal pressure and fundamental frequency in phonation
,”
J. Acoust. Soc. Am.
85
,
901
906
(
1989
).
3.
R.
Colton
, “
Physiological mechanisms of vocal frequency control: The role of tension
,”
J. Voice
2
,
208
220
(
1988
).
4.
J.
van den Berg
and
T.
Tan
, “
Results of experiments with human larynges
,”
Practica Oto. Rhino. Laryngol.
21
,
425
450
(
1959
).
5.
I.
Titze
and
E.
Hunter
, “
Normal vibration frequencies of the vocal ligament
,”
J. Acoust. Soc. Am.
115
,
2264
2269
(
2004
).
6.
R.
Descout
,
J.
Auloge
, and
B.
Guerin
, “
Continuous model of the vocal source
,” in
International Conference on Acoustics, Speech and Signal Processing
, Denver, CO (
1980
), pp.
61
64
.
7.
K.
Zhang
,
T.
Siegmund
, and
R.
Chan
, “
A two-layer composite model of the vocal fold lamina propria for fundamental frequency regulation
,”
J. Acoust. Soc. Am.
122
,
1090
1101
(
2007
).
8.
K.
Zhang
,
T.
Siegmund
, and
R.
Chan
, “
A constitutive model of the human vocal fold cover for fundamental frequency regulation
,”
J. Acoust. Soc. Am.
119
,
1050
1062
(
2006
).
9.
J.
Lam Tang
,
C.
Boliek
, and
J.
Rieger
, “
Laryngeal and respiratory behavior during pitch change in professional singers
,”
J. Voice
28
,
622
633
(
2008
).
10.
H.
Larsson
and
S.
Hertegård
, “
Vocal fold dimensions in professional opera singers as measured by means of laser triangulation
,”
J. Voice
22
,
734
739
(
2008
).
11.
U.
Hoppe
,
F.
Rosanowski
,
M.
Döllinger
,
J.
Lohscheller
,
M.
Schuster
, and
U.
Eysholdt
, “
Glissando: Laryngeal motorics and acoustics
,”
J. Voice
17
,
370
376
(
2003
).
12.
H.
Hollien
, “
Vocal pitch variations related to changes in vocal fold length
,”
J. Speech Hear. Res.
3
,
150
156
(
1960
).
13.
H.
Hollien
and
G.
Moore
, “
Measurements of the vocal folds during changes in pitch
,”
J. Speech Hear. Res.
3
,
157
165
(
1960
).
14.
N.
Nishizawa
,
M.
Sawashima
, and
K.
Yonemoto
, “
Vocal fold length in vocal pitch change
,” in
Vocal Physiology: Voice Production, Mechanisms, and Function
, edited by
O.
Fujimura
(
Raven Press
,
New York
,
1988
), pp.
75
82
.
15.
A.
Sonninen
and
P.
Hurme
, “
Vocal fold strain and vocal pitch in singing: Radiographic observations of singers and nonsingers
,”
J. Voice
12
,
274
286
(
1998
).
16.
S.
Hertegård
,
A.
Håkansson
, and
O.
Thorstensen
, “
Vocal fold length measurements with computed tomography
,”
Scand. J. Log. Phon.
18
,
57
63
(
1993
).
17.
S.
Gray
, “
Cellular physiology of the vocal folds
,”
Otolaryng. Clin. N. Am.
33
,
679
697
(
2000
).
18.
M.
Hirano
,
Y.
Kakita
,
K.
Ohmaru
, and
S.
Kurita
, “
Structure and mechanical properties of the vocal fold
,” in
Speech and Language: Advances in Basic Research and Practice
, edited by
N.
Lass
(
Academic Press
,
New York
,
1982
), Vol.
7
, pp.
271
297
.
19.
K.
Ishii
,
W.
Zhai
,
M.
Akita
, and
H.
Hirose
, “
Ultrastructure of the lamina propria of the human vocal fold
,”
Acta Oto-laryngol.
116
,
778
782
(
1996
).
20.
S.
Gray
,
I.
Titze
,
F.
Alipour
, and
T.
Hammond
, “
Biomechanical and histological observations of vocal fold fibrous proteins
,”
Ann. Otol. Rhinol. Laryngol.
109
,
77
85
(
2000
).
21.
J.
Kelleher
,
T.
Siegmund
,
M.
Du
,
E.
Naseri
, and
R.
Chan
, “
Empirical measurements of biomechanical anisotropy of the human vocal fold lamina propria
,”
Biomech. Model. Mechanobiol.
, in press (
2012
).
22.
J.
Kelleher
,
K.
Zhang
,
T.
Siegmund
, and
R.
Chan
, “
Spatially varying properties of the vocal ligament contribute to its eigenfrequency response
,”
J. Mech. Behav. Biomed.
3
,
600
609
(
2010
).
23.
J.
Kelleher
,
T.
Siegmund
,
R.
Chan
, and
E.
Henslee
, “
Optical measurements of vocal fold tensile properties: Implications for phonatory mechanics
,”
J. Biomech.
44
,
1729
1734
(
2011
).
24.
T.
Gasser
,
R.
Ogden
, and
G.
Holzapfel
, “
Hyperelastic modelling of arterial layers with distributed collagen fibre orientations
,”
J. R. Soc. Interface
3
,
15
35
(
2006
).
25.
A.
Miri
,
U.
Tripathy
,
L.
Mongeau
, and
P.
Wiseman
, “
Nonlinear laser scanning microscopy of human vocal folds
,”
Laryngoscope
122
,
356
363
(
2012
).
26.
P.
Campagnola
and
L.
Loew
, “
Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms
,”
Nat. Biotechnol.
21
,
1356
1360
(
2003
).
27.
F.
Helmchen
and
W.
Denk
, “
Deep tissue two-photon microscopy
,”
Nat. Methods
2
,
932
940
(
2005
).
28.
T.
Dudek
, “
Young's and shear moduli of unidirectional composites by a resonant beam method
,”
J. Compos. Mater.
4
,
232
241
(
1970
).
29.
J.
Swadener
and
G.
Pharr
, “
Indentation of elastically anisotropic half-spaces by cones and parabolae of revolution
,”
Philos. Mag. A
81
,
447
466
(
2001
).
30.
J.
Kelleher
,
T.
Siegmund
, and
R.
Chan
, “
Could spatial heterogeneity in human vocal fold elastic properties improve the quality of phonation?
,”
Ann. Biomed. Eng.
40
,
2708
2718
(
2012
).
31.
S.
Chaudhuri
,
H.
Nguyen
,
R.
Rangayyan
,
S.
Walsh
, and
C.
Frank
, “
A Fourier domain directional filtering method for analysis of collagen alignment in ligaments
,”
IEEE Trans. Biomed. Eng.
34
,
509
518
(
1987
).
32.
L.
Timmins
,
Q.
Wu
,
A.
Yeh
,
J.
Moore
, Jr.
, and
S.
Greenwald
, “
Structural inhomogeneity and fiber orientation in the inner arterial media
,”
Am. J. Physiol. Heart Circ. Physiol.
298
,
H1537
H1545
(
2010
).
33.
A.
Bokaian
, “
Natural frequencies of beams under tensile axial loads
,”
J. Sound Vib.
142
,
481
498
(
1990
).
34.
S.
Rao
,
Mechanical Vibrations
, 4th ed. (
Pearson Prentice Hall
,
Upper Saddle River, NJ
,
2004
), pp.
620
622
.
35.
H.
Abramovich
, “
Natural frequencies of Timoshenko beams under compressive axial loads
,”
J. Sound Vib.
157
,
183
189
(
1992
).
36.
J.
Hutchinson
, “
Shear coefficients for Timoshenko beam theory
,”
J. Appl. Mech.
68
,
87
92
(
2001
).
37.
J.
Kelleher
, “
Biomechanical influences on the vibration of human vocal fold tissue
,” Ph.D. thesis,
Purdue University
(
2012
), Chap. 7.
38.
R.
Chan
,
T.
Siegmund
, and
K.
Zhang
, “
Biomechanics of fundamental frequency regulation: Constitutive modeling of the vocal fold lamina propria
,”
Logop. Phoniatr. Voco.
34
,
181
189
(
2009
).
39.
Z.
Zhang
,
J.
Neubauer
, and
D.
Berry
, “
Physical mechanisms of phonation onset: A linear stability analysis of an aeroelastic continuum model of phonation
,”
J. Acoust. Soc. Am.
122
,
2279
2295
(
2007
).
40.
S.
Han
,
H.
Benaroya
, and
T.
Wei
, “
Dynamics of transversely vibrating beams using four engineering theories
,”
J. Sound Vib.
225
,
935
988
(
1999
).
41.
G.
Holzapfel
,
T.
Gasser
, and
R.
Ogden
, “
A new constitutive framework for arterial wall mechanics and a comparative study of material models
,”
J. Elast.
61
,
1
48
(
2000
).
42.
I.
Tokuda
,
M.
Zemke
,
M.
Kob
, and
H.
Herzel
, “
Biomechanical modeling of register transitions and the role of vocal tract resonators
,”
J. Acoust. Soc. Am.
127
,
1528
1536
(
2010
).
43.
I.
Titze
,
The Myoelastic Aerodynamic Theory of Phonation
(
National Center for Voice and Speech
,
Iowa City
,
2006
), Chap. 4.
44.
J.
Nielsen
, “
Eigenfrequencies and eigenmodes of beam structures on an elastic foundation
,”
J. Sound Vib.
145
,
479
487
(
1991
).
45.
D.
Berry
and
I.
Titze
, “
Normal modes in a continuum model of vocal fold tissues
,”
J. Acoust. Soc. Am.
100
,
3345
3354
(
1996
).
You do not currently have access to this content.