This papers reports a three-dimensional (3D) extension of the model proposed by Groby et al. [J. Acoust. Soc. Am. 127, 2865–2874 (2010)]. The acoustic properties of a porous layer backed by a rigid plate with periodic rectangular irregularities are investigated. The Johnson–Champoux–Allard model is used to predict the complex bulk modulus and density of the equivalent fluid in the porous material. The method of variable separation is used together with the radiation conditions and Floquet theorem to derive the analytical expression for the acoustic reflection coefficient from the porous layer with 3D inhomogeneities. Finite element method is also used to validate the proposed analytical solution. The theoretical and numerical predictions agree well with the experimental data obtained from an impedance tube experiment. It is shown that the measured acoustic absorption coefficient spectrum exhibits a quasi-total absorption peak at the predicted frequency of the mode trapped in the porous layer. When more than one irregularity per spatial period is considered, additional absorption peaks are observed.

1.
O.
Tanneau
,
J.
Casimir
, and
P.
Lamary
, “
Optimization of multilayered panels with poroelastic components for an acoustical transmission objective
,”
J. Acoust. Soc. Am.
120
,
1227
1238
(
2006
).
2.
J.-P.
Groby
,
W.
Lauriks
, and
T.
Vigran
, “
Total absorption peak by use of a rigid frame porous layer backed with a rigid multi-irregularities grating
,”
J. Acoust. Soc. Am.
127
,
2865
2874
(
2010
).
3.
M.
Schroeder
, “
Toward better acoustics for concert halls
,”
Phys. Today
33
,
24
30
(
1980
).
4.
B.
Sapoval
,
B.
Hebert
, and
S.
Russ
, “
Experimental study of a fractal acoustical cavity
,”
J. Acoust. Soc. Am.
105
,
2014
2019
(
1999
).
5.
B.
Sapoval
,
S.
Felix
, and
M.
Filoche
, “
Localisation and damping in resonators with complex geometry
,”
Eur. Phys. J.
161
,
225
232
(
2008
).
6.
J.-F.
Allard
,
O.
Dazel
,
G.
Gautier
,
J.-P.
Groby
, and
W.
Lauriks
, “
Prediction of sound reflexion by corrugated porous surfaces
,”
J. Acoust. Soc. Am.
129
,
1696
1706
(
2011
).
7.
R.
Wood
, “
A suspected case of the electrical resonance of minute metal particles for light-waves. a new type of absorption
,”
Proc. Phys. Soc. London
18
,
166
182
(
1902
).
8.
C.
Cutler
, “
Electromagnetic waves guided by corruguated structures
,” Technical Report No. MM 44-160-218, Bell Telephone Lab (
1944
).
9.
N.
Bonod
,
T.
Tayeb
,
D.
Maystre
,
S.
Enoch
, and
E.
Popov
, “
Total absorption of light by lamellar metallic gratings
,”
Opt. Express
16
,
15431
15438
(
2008
).
10.
P.-Y.
Bard
and
A.
Wirgin
, “
Effects of buildings on the duration and amplitude of ground motion in Mexico city
,”
Bull. Seism. Soc. Am.
86
,
914
920
(
1996
).
11.
J.-P.
Groby
and
A.
Wirgin
, “
Seismic motion in urban sites consisting of blocks in welded contact with a soft layer overlying a hard half space
,”
Geophys. J. Int.
172
,
725
758
(
2008
).
12.
A.
Pelat
,
S.
Felix
, and
V.
Pagneux
, “
On the use of leaky modes in open waveguides for the sound propagation modeling in street canyons
,”
J. Acoust. Soc. Am.
126
,
2864
2872
(
2009
).
13.
M.
Molerón
,
S.
Félix
,
O.
Richoux
,
V.
Pagneux
, and
J.
Picaut
, “
Application of the modal-FE method to the study of open periodic lattices
,” in
Proceedings of the 6th Forum Acusticum
(
2011
), pp.
1047
1052
.
14.
J.-P.
Groby
,
A.
Duclos
,
O.
Dazel
,
L.
Boeckx
, and
W.
Lauriks
, “
Absorption of a rigid frame porous layer with periodic circular inclusions backed by a periodic grating
,”
J. Acoust. Soc. Am.
129
,
3035
3046
(
2011
).
15.
B.
Nennig
,
Y.
Renou
,
J.-P.
Groby
, and
Y.
Aurégan
, “
A mode matching approach for modeling 2D porous grating with rigid or soft inclusions
,”
J. Acoust. Soc. Am.
131
,
3841
3852
(
2012
).
16.
J.-P.
Groby
,
A.
Duclos
,
O.
Dazel
,
L.
Boeckx
, and
L.
Kelders
, “
Enhancing absorption coefficient of a backed rigid frame porous layer by embedding circular periodic inclusions
,”
J. Acoust. Soc. Am.
130
,
3771
3780
(
2011
).
17.
D.
Johnson
,
J.
Koplik
, and
R.
Dashen
, “
Theory of dynamic permeability and tortuosity in fluid-saturated porous media
,”
J. Fluid Mech.
176
,
379
402
(
1987
).
18.
Y.
Champoux
and
J.-F.
Allard
, “
Dynamic tortuosity and bulk modulus in air-saturated porous media
,”
J. Appl. Phys.
70
,
1975
1979
(
1991
).
19.
L.
De Ryck
,
J.-P.
Groby
,
P.
Leclaire
,
W.
Lauriks
,
A.
Wirgin
,
C.
Depollier
, and
Z.
Fellah
, “
Acoustic wave propagation in a macroscopically inhomogeneous porous medium saturated by a fluid
,”
Appl. Phys. Lett.
90
,
181901
(
2007
).
20.
J.-F.
Allard
, and
N.
Atalla
,
Propagation of Sound in Porous Media: Modelling Sound Absorbing Materials
(
Wiley
,
Chichester
,
2009
), Chap. 5, pp.
73
107
.
21.
B.
Brouard
,
D.
Lafarge
, and
J.
Allard
, “
A general method of modeling sound propagation in layered media
,”
J. Sound Vib.
83
,
129
142
(
1995
).
22.
O.
Umnova
,
K.
Attenborough
, and
C.
Linton
, “
Effects of porous covering on sound attenuation by periodic arrays of cylinders
,”
J. Acoust. Soc. Am.
119
,
278
284
(
2006
).
23.
A.
Nicolet
,
S.
Guenneau
,
C.
Geuzaine
, and
F.
Zolla
, “
Modelling of electromagnetic waves in periodic media with finite elements
,”
J. Comput. Appl. Math.
168
,
321
329
(
2004
).
24.
A. C.
Hennion
,
R.
Bossut
,
J. N.
Decarpigny
, and
C.
Audoly
, “
Analysis of the scattering of a plane acoustic wave by a periodic elastic structure using the finite element method: Application to compliant tube gratings
,”
J. Acoust. Soc. Am.
87
,
1861
1870
(
1990
).
You do not currently have access to this content.