In 2009, as part of PhilSea09, the instrument platform known as Deep Sound was deployed in the Philippine Sea, descending under gravity to a depth of 6000 m, where it released a drop weight, allowing buoyancy to return it to the surface. On the descent and ascent, at a speed of 0.6 m/s, Deep Sound continuously recorded broadband ambient noise on two vertically aligned hydrophones separated by 0.5 m. For frequencies between 1 and 10 kHz, essentially all the noise was found to be downward traveling, exhibiting a depth-independent directional density function having the simple form cos θ, where θ ≤ 90° is the polar angle measured from the zenith. The spatial coherence and cross-spectral density of the noise show no change in character in the vicinity of the critical depth, consistent with a local, wind-driven surface-source distribution. The coherence function accurately matches that predicted by a simple model of deep-water, wind-generated noise, provided that the theoretical coherence is evaluated using the local sound speed. A straightforward inversion procedure is introduced for recovering the sound speed profile from the cross-correlation function of the noise, returning sound speeds with a root-mean-square error relative to an independently measured profile of 8.2 m/s.

1.
P. F.
Worcester
and
R. C.
Spindel
, “
North Pacific Acoustic Laboratory
,”
J. Acoust. Soc. Am.
117
,
1499
1510
(
2005
).
2.
P. F.
Worcester
,
R. K.
Andrew
,
A. B.
Baggeroer
,
J. A.
Colosi
,
G.
D'Spain
,
M.
Dzieciuch
,
K. D.
Heaney
,
B. M.
Howe
,
J. N.
Kemp
, and
J. A.
Mercer
, “
Acoustic propagation and ambient noise in the Philippine Sea: The 2009 and 2010-2011 Philippine Sea experiments
,”
J. Acoust. Soc. Am.
128
,
2385
(
2010
).
3.
D. R.
Barclay
,
F.
Simonet
, and
M. J.
Buckingham
, “
Deep Sound: A free-falling sensor platform for depth-profiling ambient noise in the deep ocean
,”
Mar. Tech. Soc. J.
43
,
144
150
(
2009
).
4.
E. H.
Axelrod
,
B. A.
Schoomer
, and
W. A.
VonWinkle
, “
Vertical directionality of ambient noise in the deep ocean at a site near Bermuda
,”
J. Acoust. Soc. Am.
37
,
77
83
(
1965
).
5.
A. B.
Baggeroer
,
E. K.
Scheer
,
T. N.
Group
,
J. A.
Colosi
,
B. D.
Cornuelle
,
B. D.
Dushaw
,
M.
Dzieciuch
,
B. M.
Howe
,
J. A.
Mercer
,
W. H.
Munk
,
R. C.
Spindel
, and
P. F.
Worcester
, “
Statistics and vertical directionality of low-frequency ambient noise at the North Pacific Acoustics Laboratory site
,”
J. Acoust. Soc. Am.
117
,
1643
1665
(
2005
).
6.
B. F.
Cron
,
B. C.
Hassell
, and
F. J.
Keltonic
, “
Comparison of theoretical and experimental values of spatial correlation
,”
J. Acoust. Soc. Am.
37
,
523
529
(
1965
).
7.
G. R.
Fox
, “
Ambient-noise directivity measurements
,”
J. Acoust. Soc. Am.
36
,
1537
1540
(
1964
).
8.
R. D.
Gaul
,
D. P.
Knobles
,
J. A.
Shooter
, and
A. F.
Wittenborn
, “
Ambient noise analysis of deep-ocean measurements in the Northeast Pacific
,”
IEEE J. Ocean. Eng.
32
,
497
512
(
2007
).
9.
A. J.
Perrone
, “
Deep-ocean ambient noise spectra in the Northwest Atlantic
,”
J. Acoust. Soc. Am.
46
,
762
770
(
1969
).
10.
S. W.
Marshall
, “
Depth dependence of ambient noise
,”
IEEE J. Ocean. Eng.
30
,
275
281
(
2005
).
11.
N. P.
Fofonov
and
R. C.
Millard
, Jr.
,
Algorithms for Computation of Fundamental Properties of Seawater
, UNESCO Technical Papers in Marine Science, No. 44, Division of Marine Sciences,
UNESCO, Place du Fontenoy
,
Paris
, pp.
1
54
(
1983
).
12.
C.
Sun
,
Sustained Ocean Observations and Information for Society, in Oceans Obs. 09
, edited by
J. A.
Hall
,
D. E.
Harrison
and
D.
Stammer
, Vol.
2
(
ESA Publication WPP-306
,
Venice, Italy
,
2010
).
13.
R. A.
Finger
,
L. A.
Abbagnaro
, and
B. B.
Bauer
, “
Measurements of low-velocity flow noise on pressure and pressure gradient hydrophones
,”
J. Acoust. Soc. Am.
65
,
1407
1412
(
1979
).
14.
B. F.
Cron
and
C. H.
Sherman
, “
Spatial correlation functions for various noise models
,”
J. Acoust. Soc. Am.
34
,
1732
1736
(
1962
).
15.
B. F.
Cron
and
C. H.
Sherman
, “
Addendum: Spatial correlation functions for various noise models [J. Acoust. Soc. Am. 34, 1732–1736 (1962)]
J. Acoust. Soc. Am.
38
,
885
(
1965
).
16.
M.
Van Dyke
,
An Album of Fluid Motion
(
The Parabolic Press
,
Stanford, CA
,
1982
), Frontispiece (von Kármán vortex street) and Figs. 47 and 48 (fully developed turbulent wake).
17.
H.
Tennekes
and
J. L.
Lumley
,
A First Course in Turbulence
(
MIT Press
,
Cambridge, Massachusetts
,
1972
), p.
265
.
18.
G. M.
Wenz
, “
Acoustic ambient noise in the ocean: Spectra and sources
,”
J. Acoust. Soc. Am.
34
,
1936
1956
(
1962
).
19.
V. O.
Knudsen
,
R. S.
Alford
, and
J. W.
Emling
, “
Underwater ambient noise
,”
J. Mar. Res.
7
,
410
429
(
1948
).
20.
H.
Cox
, “
Spatial correlation in arbitrary noise fields with application to ambient sea noise
,”
J. Acoust. Soc. Am.
54
,
1289
1301
(
1973
).
21.
M. J.
Buckingham
, “
On the two-point cross-correlation function of anisotropic, spatially homogeneous ambient noise in the ocean and its relationship to the Green's function
,”
J. Acoust. Soc. Am.
129
,
3562
3576
(
2011
).
22.
M. J.
Buckingham
, “
Cross-correlation in band-limited ocean ambient noise fields
,”
J. Acoust. Soc. Am.
131
,
2643
2657
(
2012
).
23.
M. J.
Buckingham
,
Noise in Electronic Devices and Systems
(
Ellis Horwood
,
Chichester
,
1983
), p.
48
.
You do not currently have access to this content.