The trade-off between sound level and duration on hearing sensitivity (temporal summation) was investigated in a California sea lion (Zalophus californianus) using airborne pure-tone stimuli. Thresholds were behaviorally measured using the method of constant stimuli at 2.5, 5, and 10 kHz for nine signal durations ranging from 25 to 500 ms. In general, thresholds decreased as duration increased up to 300 ms, beyond which thresholds did not significantly improve. When these data were fitted separately to two versions of an exponential model, the estimated time constants (92–167 ms) were generally consistent between the two fits. However, the model with more free parameters generated fits with consistently higher R2 values, while avoiding potential arbitrary decisions about which data to include. The time constants derived for the California sea lion were generally consistent with those reported for other mammals, including other pinnipeds. The current study did not show a clear correlation between time constant and test frequency. The results should be considered when conducting audiometric work, assessing communications ranges, and evaluating potential noise impacts of airborne tonal signals on California sea lions.

1.
Au
,
W. W. L.
,
Moore
,
P. W. B.
, and
Pawloski
,
D. A.
(
1988
). “
Detection of complex echoes in noise by an echolocating dolphin
,”
J. Acoust. Soc. Am.
83
,
662
668
.
2.
Cornsweet
,
T. N.
(
1962
). “
The staircase method in psychophysics
,”
J. Acoust. Soc. Am.
75
,
485
491
.
3.
Corso
,
J. F.
,
Wright
,
H. N.
, and
Valerio
,
M. V.
(
1976
). “
Auditory temporal summation in presbycusis and noise exposure
,”
J. Gerontol.
31
,
56
63
.
4.
Costulupes
,
J. A.
(
1983
). “
Temporal integration of pure tones in the cat
,”
Hear. Res.
9
,
42
54
.
5.
Dehnhardt
,
G.
(
2002
). “
Sensory systems
,” in
Marine Mammal Biology: An Evolutionary Approach
, edited by
A. R.
Hoelzel
(
Blackwell
,
Oxford, UK
), pp.
116
141
.
6.
Fay
,
R. R.
(
1988
).
Hearing in Vertebrates: A Psychophysical Databook
(
Hill-Fay Associates
,
Winnetka, IL
), pp.
469
486
.
7.
Finneran
,
J. J.
,
Dear
,
R.
,
Carder
,
D. A.
, and
Ridgway
,
S. H.
(
2003
). “
Auditory and behavioral responses of California sea lions (Zalophus californianus) to single underwater impulses from an arc-gap transducer
,”
J. Acoust. Soc. Am.
114
,
1667
1677
.
8.
Finney
,
D. J.
(
1971
).
Probit Analysis
, 3rd ed. (
Cambridge University Press
,
Cambridge, UK
), pp.
1
333
.
9.
Gerken
,
G. M.
,
Bhat
,
V. K. H.
, and
Hutchison-Clutter
,
M.
(
1990
). “
Auditory temporal integration and the power function model
,”
J. Acoust. Soc. Am.
88
,
767
778
.
10.
Heil
,
P.
, and
Neubauer
,
H.
(
2003
). “
A unifying basis of auditory thresholds based on temporal summation
,”
Proc. Natl. Acad. Sci. U.S.A.
100
,
6151
6156
.
11.
Johnson
,
C. S.
(
1968
). “
Relation between absolute threshold and duration-of-tone pulses in the bottlenosed porpoise
,”
J. Acoust. Soc. Am.
43
,
757
763
.
15.
Kastak
,
D.
,
Reichmuth
,
C.
,
Holt
,
M. M.
,
Mulsow
,
J.
,
Southall
,
B. L.
, and
Schusterman
,
R. J.
(
2007
). “
Onset, growth, and recovery of in-air temporary threshold shift in a California sea lion (Zalophus californianus)
,”
J. Acoust. Soc. Am.
122
,
2916
2924
.
12.
Kastak
,
D.
, and
Schusterman
,
R. J.
(
1998
). “
Low frequency amphibious hearing in pinnipeds: Methods, measurements, noise, and ecology
,”
J. Acoust. Soc. Am.
103
,
2216
2228
.
13.
Kastak
,
D.
,
Schusterman
,
R. J.
,
Southall
,
B. L.
, and
Reichmuth
,
C. J.
(
1999
). “
Underwater temporary threshold shift induced by octave-band noise in three species of pinniped
,”
J. Acoust. Soc. Am.
106
,
1142
1148
.
14.
Kastak
,
D.
,
Southall
,
B. L.
,
Schusterman
,
R. J.
, and
Reichmuth Kastak
,
C.
(
2005
). “
Underwater temporary threshold shift in pinnipeds: Effects of noise level and duration
,”
J. Acoust. Soc. Am.
118
,
3154
3163
.
16.
Kastelein
,
R. A.
,
Hoek
,
L.
,
Wensveen
,
P. J.
,
Terhune
,
J. M.
, and
de Jong
,
C. A. F.
(
2010
). “
The effect of signal duration on the underwater hearing thresholds of two harbor seals (Phoca vitulina) for single tonal signals between 0.2 and 40 kHz
.”
J. Acoust. Soc. Am.
127
,
1135
1145
.
17.
Krishna
,
B. S.
(
2006
). “
Comment on ‘Auditory nerve first-spike latency and auditory absolute threshold: A computer model’
,”
J. Acoust. Soc. Am.
120
,
591
.
18.
Krumbholz
,
K.
, and
Wiegrebe
,
L.
(
1998
). “
Detection thresholds for brief sounds—are they a measure of auditory intensity integration?
Hearing Res.
124
,
155
169
.
19.
Marquardt
,
D. W.
(
1963
). “
An algorithm for least-squares estimation of nonlinear parameters
,”
SIAM J. Appl. Math.
11
,
431
441
.
20.
Meddis
,
R.
(
2006a
). “
Auditory-nerve first-spike latency and auditory absolute threshold: A computer model
,”
J. Acoust. Soc. Am.
119
,
406
417
.
21.
Meddis
,
R.
(
2006b
). “
Reply to comment on ‘Auditory-nerve first-spike latency and auditory absolute threshold: A computer model’
,”
J. Acoust. Soc. Am.
120
,
1192
.
22.
Meddis
,
R.
, and
Lecluyse
,
W.
(
2011
). “
The psychophysics of absolute threshold and signal duration: A probabilistic approach
,”
J. Acoust. Soc. Am.
129
,
3153
3165
.
23.
Mulsow
,
J.
, and
Reichmuth
,
C.
(
2010
). “
Psychophysical and electrophysiological aerial audiograms of a Steller sea lion (Eumetopias jubatus)
,”
J. Acoust. Soc. Am.
127
,
2692
2701
.
24.
National Research Council. (
2000
).
Marine Mammals and Low-Frequency Sound: Progress Since 1994
(
National Academy Press
,
Washington, D.C
), p.
79
.
25.
O'Connor
,
K. N.
,
Barruel
,
P.
,
Hajalilou
,
R.
, and
Sutter
,
M. L.
(
1999
). “
Auditory temporal integration in the rhesus macaque (Macaca mulatta)
,”
J. Acoust. Soc. Am.
106
,
954
965
.
26.
Plomp
,
R.
, and
Bouman
,
M. A.
(
1959
). “
Relation between hearing threshold and duration of tone pulses
,”
J. Acoust. Soc. Am.
31
,
749
758
.
27.
Reichmuth
,
C.
, and
Southall
,
B. L.
(
2012
). “
Underwater hearing in California sea lions (Zalophus californianus): expansion and interpretation of existing data
,”
Mar. Mamm. Sci.
28
,
359
363
.
28.
Richardson
,
W. J.
,
Green
,
C. R.
, Jr.
,
Malme
,
C. I.
, and
Thomson
,
D. H.
(
1995
).
Marine Mammals and Noise
(
Academic
,
San Diego, CA
), pp.
205
240
.
29.
Schusterman
,
R. J.
(
1981
). “
Behavioral capabilities of seals and sea lions: A review of their hearing, visual, learning, and diving skills
,”
Psych. Record
31
,
125
143
.
30.
Southall
,
B. L.
,
Schusterman
,
R. J.
, and
Kastak
,
D.
(
2000
). “
Masking in three pinnipeds: Underwater, low frequency critical ratios
,”
J. Acoust. Soc. Am.
108
,
1322
1326
.
31.
Southall
,
B. L.
,
Schusterman
,
R. J.
, and
Kastak
,
D.
(
2003
). “
Auditory masking in three pinnipeds: Aerial critical ratios and direct critical bandwidth measurements
,”
J. Acoust. Soc. Am.
108
,
1322
1326
.
32.
Stebbins
,
W. C.
(
1970
). “
Principles of animal psychophysics
,” in
Animal Psychophysics: The Design and Conduct of Sensory Experiments
, edited by
W. C.
Stebbins
(
Appleton-Century-Crofts
,
New York
), pp.
1
19
.
33.
Terhune
,
J. M.
(
1988
). “
Detection thresholds of a harbour seal to repeated underwater high-frequency, short-duration sinusoidal pulses
,”
Can. J. Zool.
66
,
1578
1582
.
34.
Viemeister
,
N. F.
, and
Wakefield
,
G. H.
(
1991
). “
Temporal integration and multiple looks
,”
J. Acoust. Soc. Am.
90
,
858
865
.
35.
Watson
,
C. S.
, and
Gengel
,
R. W.
(
1969
). “
Signal duration and signal frequency in relation to auditory sensitivity
,”
J. Acoust. Soc. Am.
46
,
989
997
.
36.
Wartzok
,
D.
, and
Ketten
,
D. R.
(
1999
). “
Marine mammal sensory systems
,” in
Biology of Marine Mammals
, edited by
J. E.
Reynolds
 III
and
S. A.
Rommel
(
Smithsonian Institute
,
Washington, D.C.
), pp.
117
175
.
37.
Weißenbacher
,
P.
,
Wiegrebe
,
L.
, and
Kössel
,
M.
(
2002
). “
The effect of preceding sonar emission on temporal integration in the bat, Megaderma lyra
,”
J. Comp. Physiol. A.
188
,
147
155
.
38.
Yost
,
W. A.
(
2000
).
Fundamentals of Hearing: An Introduction
, 4th ed. (
Academic
,
San Diego, CA
), pp.
154
155
and 259–260.
39.
Zwislocki
,
J.
(
1960
). “
Theory of temporal auditory summation
,”
J. Acoust. Soc. Am.
22
,
1046
1060
.
You do not currently have access to this content.