Structural-acoustic finite element models including three-dimensional (3D) modeling of porous media are generally computationally costly. While being the most commonly used predictive tool in the context of noise reduction applications, efficient solution strategies are required. In this work, an original modal reduction technique, involving real-valued modes computed from a classical eigenvalue solver is proposed to reduce the size of the problem associated with the porous media. In the form presented in this contribution, the method is suited for homogeneous porous layers. It is validated on a 1D poro-acoustic academic problem and tested for its performance on a 3D application, using a subdomain decomposition strategy. The performance of the proposed method is estimated in terms of degrees of freedom downsizing, computational time enhancement, as well as matrix sparsity of the reduced system.

1.
M. A.
Biot
, “
Theory of propagation of elastic waves in a fluid-saturated porous solid. I. Low-frequency range
,”
J. Acoust. Soc. Am.
28
,
168
178
(
1956
).
2.
M. A.
Biot
, “
Theory of propagation of elastic waves in a fluid-saturated porous solid. II. Higher frequency range
,”
J. Acoust. Soc. Am.
28
,
179
191
(
1956
).
3.
M. A.
Biot
, “
Generalized theory of acoustic propagation in porous dissipative media
,”
J. Acoust. Soc. Am.
34
,
1254
1264
(
1962
).
4.
J.
Allard
and
N.
Atalla
,
Propagation of Sound in Porous Media: Modelling Sound Absorbing Materials
(
Wiley
,
New York
,
2009
),
372
pp.
5.
A.
Bermúdez
and
R.
Rodríguez
, “
Modelling and numerical solution of elastoacoustic vibrations with interface damping
,”
Int. J. Numer. Methods Eng.
46
,
1763
1779
(
1999
).
6.
A.
Bermúdez
,
L.
Hervella-Nieto
, and
R.
Rodríguez
, “
Finite element computation of the vibrations of a plate-fluid system with interface damping
,”
Comput. Methods Appl. Mech. Eng.
190
,
3021
3038
(
2001
).
7.
J.
Deü
,
W.
Larbi
, and
R.
Ohayon
, “
Vibration and transient response of structural-acoustic interior coupled systems with dissipative interface
,”
Comput. Methods Appl. Mech. Eng.
197
,
4894
4905
(
2008
).
8.
W.
Desmet
, “
A wave based prediction technique for coupled vibro-acoustic analysis
,” Ph.D. thesis,
K.U. Leuven, division PMA
, Leuven,
1998
,
448
pp.
9.
W.
Desmet
,
B.
Van Hal
,
P.
Sas
, and
D.
Vandepitte
, “
A computationally efficient prediction technique for the steady-state dynamic analysis of coupled vibro-acoustic systems
,”
Adv. Eng. Software
33
,
527
540
(
2002
).
10.
E.
Deckers
,
N.
Hörlin
,
D.
Vandepitte
, and
W.
Desmet
, “
A novel wave based prediction technique for the efficient dynamic modeling of poro-elastic materials
,” in
Proceedings of Euronoise
,
Edinburgh, Scotland
,
2009
, paper 0197.
11.
E.
Deckers
,
B.
Van Genechten
,
D.
Vandepitte
, and
W.
Desmet
, “
Efficient treatment of stress singularities in poroelastic wave based models using special purpose enrichment functions
,”
Comput. Struct.
89
,
1117
1130
(
2011
).
12.
Y. J.
Kang
and
J. S.
Bolton
, “
Finite element modeling of isotropic elastic porous materials coupled with acoustical finite elements
,”
J. Acoust. Soc. Am.
98
,
635
643
(
1995
).
13.
R.
Panneton
and
N.
Atalla
, “
An efficient finite element scheme for solving the three-dimensional poroelasticity problem in acoustics
,”
J. Acoust. Soc. Am.
101
,
3287
3298
(
1997
).
14.
N.
Dauchez
,
S.
Sahraoui
, and
N.
Atalla
, “
Convergence of poroelastic finite elements based on Biot displacement formulation
,”
J. Acoust. Soc. Am.
109
,
33
40
(
2001
).
15.
N.
Atalla
,
M. A.
Hamdi
, and
R.
Panneton
, “
Enhanced weak integral formulation for the mixed (u,p) poroelastic equations
,”
J. Acoust. Soc. Am.
109
,
3065
3068
(
2001
).
16.
O.
Dazel
,
F.
Sgard
,
F. X.
Becot
, and
N.
Atalla
, “
Expressions of dissipated powers and stored energies in poroelastic media modeled by {u, U} and {u, P} formulations
,”
J. Acoust. Soc. Am.
123
,
2054
2063
(
2008
).
17.
O.
Dazel
,
B.
Brouard
,
C.
Depollier
, and
S.
Griffiths
, “
An alternative Biot's displacement formulation for porous materials
,”
J. Acoust. Soc. Am.
121
,
3509
3516
(
2007
).
18.
N. E.
Hörlin
,
M.
Nordström
, and
P.
Göransson
, “
A 3-D hierarchical FE formulation of Biot's equations for elasto-acoustic modeling of porous media
,”
J. Sound Vib.
245
,
633
652
(
2001
).
19.
S.
Rigobert
,
N.
Atalla
, and
F. C.
Sgard
, “
Investigation of the convergence of the mixed displacement-pressure formulation for three-dimensional poroelastic materials using hierarchical elements
,”
J. Acoust. Soc. Am.
114
,
2607
2617
(
2003
).
20.
O.
Dazel
,
F.
Sgard
, and
C. H.
Lamarque
, “
Application of generalized complex modes to the calculation of the forced response of three-dimensional poroelastic materials
,”
J. Sound Vib.
268
,
555
580
(
2003
).
21.
P.
Davidsson
and
G.
Sandberg
, “
A reduction method for structure-acoustic and poroelastic-acoustic problems using interface-dependent lanczos vectors
,”
Comput. Methods Appl. Mech. Eng.
195
,
1933
1945
(
2006
).
22.
C.
Batifol
,
M. N.
Ichchou
, and
M. A.
Galland
, “
Hybrid modal reduction for poroelastic materials
,”
C. R. Mec.
336
,
757
765
(
2008
).
23.
O.
Dazel
,
B.
Brouard
,
N.
Dauchez
, and
A.
Geslain
, “
Enhanced Biot's finite element displacement formulation for porous materials and original resolution methods based on normal modes
,”
Acta Acust. Acust.
95
,
527
538
(
2009
).
24.
O.
Dazel
,
B.
Brouard
,
N.
Dauchez
,
A.
Geslain
, and
C. H.
Lamarque
, “
A free interface CMS technique to the resolution of coupled problem involving porous materials, application to a monodimensional problem
,”
Acta Acust. Acust.
96
,
247
257
(
2010
).
25.
R. R.
Craig
and
C.
Chang
, “
A review of substructure coupling methods for dynamic analysis
,”
Adv. Eng. Sci. NASA
2
,
393
408
(
1976
).
26.
R.
Rumpler
,
A.
Legay
, and
J.
Deü
, “
Performance of a restrained-interface substructuring FE model for reduction of structural-acoustic problems with poroelastic damping
,”
Comput. Struct.
89
,
2233
2248
(
2011
).
27.
H. J.
Morand
and
R.
Ohayon
,
Fluid Structure Interaction
(
Wiley
,
Chichester
,
1995
),
220
pp.
28.
R.
Ohayon
, “
Reduced models for fluid-structure interaction problems
,”
Int. J. Numer. Methods Eng.
60
,
139
152
(
2004
).
29.
Q. H.
Tran
,
M.
Ouisse
, and
N.
Bouhaddi
, “
A robust component mode synthesis method for stochastic damped vibroacoustics
,”
Mech. Syst. Signal Process.
24
,
164
181
(
2010
).
30.
D. M.
Tran
, “
Component mode synthesis methods using partial interface modes: Application to tuned and mistuned structures with cyclic symmetry
,”
Comput. Struct.
87
,
1141
1153
(
2009
).
31.
M.
Junge
,
D.
Brunner
,
J.
Becker
, and
L.
Gaul
, “
Interface-reduction for the Craig-Bampton and Rubin method applied to FE-BE coupling with a large fluid-structure interface
,”
Int. J. Numer. Methods Eng.
77
,
1731
1752
(
2009
).
32.
M. A.
Tournour
,
N.
Atalla
,
O.
Chiello
, and
F.
Sgard
, “
Validation, performance, convergence and application of free interface component mode synthesis
,”
Comput. Struct.
79
,
1861
1876
(
2001
).
33.
E.
Balmès
, “
Use of generalized interface degrees of freedom in component mode synthesis
,” in Proceedings of IMAC,
1996
, pp.
204
210
.
34.
J.
Herrmann
,
M.
Maess
, and
L.
Gaul
, “
Substructuring including interface reduction for the efficient vibro-acoustic simulation of fluid-filled piping systems
,”
Mech. Syst. Signal Process.
24
,
153
163
(
2010
).
35.
E.
Balmès
, “
Optimal ritz vectors for component mode synthesis using the singular value decomposition
,”
AIAA J.
34
,
1256
1260
(
1996
).
36.
D.
Rixen
,
C.
Farhat
, and
M.
Géradin
, “
A two-step, two-field hybrid method for the static and dynamic analysis of substructure problems with conforming and non-conforming interfaces
,”
Comput. Methods Appl. Mech. Eng.
154
,
229
264
(
1998
).
37.
D.
Rixen
, “
A dual Craig-Bampton method for dynamic substructuring
,”
J. Comput. Appl. Math.
168
,
383
391
(
2004
).
You do not currently have access to this content.