A key step toward implementing quantitative ultrasound techniques in a clinical setting is demonstrating that parameters such as the ultrasonic backscatter coefficient (BSC) can be accurately estimated independent of the clinical imaging system used. In previous studies, agreement in BSC estimates for well characterized phantoms was demonstrated across different laboratory systems. The goal of this study was to compare the BSC estimates of a tissue mimicking sample measured using four clinical scanners, each providing RF echo data in the 1-15 MHz frequency range. The sample was previously described and characterized with single-element transducer systems. Using a reference phantom for analysis, excellent quantitative agreement was observed across the four array-based imaging systems for BSC estimates. Additionally, the estimates from data acquired with the clinical systems agreed with theoretical predictions and with estimates from laboratory measurements using single-element transducers.

1.
T.
Liu
,
F. L.
Lizzi
,
R. H.
Silverman
, and
G. J.
Kutcher
, “
Ultrasonic tissue characterization using 2-D spectrum analysis and its application in ocular tumor diagnosis
,”
Med. Phys.
31
,
1032
1039
(
2004
).
2.
E. J.
Feleppa
,
J.
Machi
,
T.
Noritomi
,
T.
Tateishi
,
R.
Oishi
,
E.
Yanagihara
, and
J.
Jucha
, “
Differentiation of metastatic from benign lymph nodes by spectrum analysis invitro
,”
Proc.—IEEE Ultrason. Symp.
2
,
1137
1142
(
1997
).
3.
J.
Mamou
,
A.
Coron
,
M.
Hata
,
J.
Machi
,
E.
Yanagihara
,
P.
Laugier
, and
E. J.
Feleppa
, “
Three-dimensional high-frequency characterization of excised human lymph nodes
,”
Proc.—IEEE Ultrason. Symp.
45
48
(
2009
).
4.
F. G.
Sommer
,
R. A.
Stern
,
P. J.
Howes
, and
H.
Young
, “
Envelope amplitude analysis following narrow-band filtering: a technique for ultrasonic tissue characterization
,”
Med. Phys.
14
,
627
632
(
1987
).
5.
M. F.
Insana
,
T. J.
Hall
,
J. G.
Wood
, and
Z. Y.
Yan
, “
Renal ultrasound using parametric imaging techniques to detect changes in microstructure and function
,”
Invest. Radiol.
28
,
720
725
(
1993
).
6.
M. L.
Oelze
,
W. D.
O’Brien
, Jr.
,
J. P.
Blue
, and
J. F.
Zachary
, “
Differentiation and characterization of rat mammary fibroadenomas and 4T1 mouse carcinomas using quantitative ultrasound imaging
,”
IEEE Trans. Med. Imaging
23
,
764
771
(
2004
).
7.
K. A.
Wear
,
T. A.
Stiles
,
G. R.
Frank
,
E. L.
Madsen
,
F.
Cheng
,
E. J.
Feleppa
,
C. S.
Hall
,
B. S.
Kim
,
P.
Lee
,
W. D.
O’Brien
, Jr.
,
M. L.
Oelze
,
B. I.
Raju
,
K. K.
Shung
,
T. A.
Wilson
, and
J. R.
Yuan
, “
Interlaboratory comparison of ultrasonic backscatter coefficient measurements from 2 to 9 MHz
,”
J. Ultrasound Med.
24
,
1235
1250
(
2005
).
8.
J. J.
Anderson
,
M. T.
Herd
,
M. R.
King
,
A.
Haak
,
Z. T.
Hafez
,
J.
Song
,
M. L.
Oelze
,
E. L.
Madsen
,
J. A.
Zagzebski
,
W. D.
O’Brien
, Jr.
, and
T. J.
Hall
, “
Interlaboratory comparison of backscatter coefficient estimates for tissue-mimicking phantoms
,”
Ultrason. Imaging
32
,
48
64
(
2010
).
9.
M. R.
King
,
J. J.
Anderson
,
M. T.
Herd
,
D.
Ma
,
A.
Haak
,
E. L.
Madsen
,
J. A.
Zagzebski
,
M. L.
Oelze
,
T. J.
Hall
, and
W. D.
O’Brien
, Jr.
, “
Ultrasonic backscatter coefficients for weakly scattering, agar spheres in agar phantoms
,”
J. Acoust. Soc. Am.
128
,
903
908
(
2010
).
10.
L. X.
Yao
,
J. A.
Zagzebski
, and
E. L.
Madsen
, “
Backscatter coefficient measurements using a reference phantom to extract depth-dependent instrumentation factors
,”
Ultrason. Imaging
12
,
58
70
(
1990
).
11.
E. L.
Madsen
,
M. F.
Insana
, and
J. A.
Zagzebski
, “
Method of data reduction for accurate determination of acoustic backscatter coefficients
,”
J. Acoust. Soc. Am.
76
,
913
923
(
1984
).
12.
J. F.
Chen
,
J. A.
Zagzebski
, and
E. L.
Madsen
, “
Tests of backscatter coefficient measurement using broadband pulses
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
40
,
603
607
(
1993
).
13.
J. J.
Faran
, “
Sound scattering by solid cylinders and spheres
,”
J. Acoust. Soc. Am.
23
,
405
418
(
1951
).
14.
R.
Hickling
, “
Analysis of echoes from a solid elastic sphere in water
,”
J. Acoust. Soc. Am.
34
,
1582
1592
(
1962
).
15.
E. L.
Madsen
,
M. A.
Hobson
,
H.
Shi
,
T.
Varghese
, and
G. R.
Frank
, “
Stability of heterogeneous elastography phantoms made from oil dispersions in aqueous gels
,”
Ultrasound Med. Biol.
32
,
261
270
(
2006
).
16.
M. F.
Insana
,
R. F.
Wagner
,
D. G.
Brown
, and
T. J.
Hall
, “
Describing small-scale structure in random media using pulse-echo ultrasound
,”
J. Acoust. Soc. Am.
87
,
179
192
(
1990
).
17.
A. L.
Gerig
,
J. A.
Zagzebski
, and
T.
Varghese
, “
Statistics of ultrasonic scatterer size estimation with a reference phantom
,”
J. Acoust. Soc. Am.
113
,
3430
3437
(
2003
).
18.
K.
Nam
,
I. M.
Rosado-Mendez
,
N. C.
Rupert
,
E. L.
Madsen
,
J. A.
Zagzebski
, and
T. J.
Hall
, “
Effects of sound speed mismatch on ultrasound attenuation measurements using reference phantoms.
Ultrason. Imaging
33
,
251
263
(
2011
).
19.
M. F.
Insana
, and
T. J.
Hall
, “
Parametric ultrasound imaging from backscatter coefficient measurements: image formation and interpretation
,”
Ultrason. Imaging
12
,
245
267
(
1990
).
You do not currently have access to this content.