Acoustic predictions of the recently developed traceo ray model, which accounts for bottom shear properties, are benchmarked against tank experimental data from the EPEE-1 and EPEE-2 (Elastic Parabolic Equation Experiment) experiments. Both experiments are representative of signal propagation in a Pekeris-like shallow-water waveguide over a non-flat isotropic elastic bottom, where significant interaction of the signal with the bottom can be expected. The benchmarks show, in particular, that the ray model can be as accurate as a parabolic approximation model benchmarked in similar conditions. The results of benchmarking are important, on one side, as a preliminary experimental validation of the model and, on the other side, demonstrates the reliability of the ray approach for seismo-acoustic applications.

1.
F.
Jensen
and
C.
Ferla
, “
Numerical solution of range-dependent benchmark problems in ocean acoustics
,”
J. Acoust. Soc. Am.
87
,
1499
1510
(
1990
).
2.
R.
Stephen
, “
Solutions to range-dependent benchmark problems by the finite-difference method
,”
J. Acoust. Soc. Am.
87
,
1527
1534
(
1990
).
3.
D.
Thomson
and
G.
Brooke
, “
Numerical implementation of a modal solution to a range-dependent benchmark problem
,”
J. Acoust. Soc. Am.
87
,
1521
1526
(
1990
).
4.
E.
Westwood
, “
Ray model solutions to the benchmark wedge problems
,”
J. Acoust. Soc. Am.
87
,
1539
1545
(
1990
).
5.
M.
Buckingham
and
A.
Tolstoy
, “
An analytical solution for benchmark problem 1: The ideal wedge
,”
J. Acoust. Soc. Am.
87
,
1511
1513
(
1990
).
6.
J.
Collis
,
W.
Siegmann
,
M.
Collins
,
H.
Simpson
, and
R.
Soukup
, “
Comparison of simulations and data from a seismo-acoustic tank experiment
,”
J. Acoust. Soc. Am.
122
,
1987
1993
(
2007
).
7.
H.
Simpson
,
J.
Collis
,
R.
Soukup
,
M.
Collins
, and
W.
Siegmann
, “
Experimental testing of the variable rotated elastic parabolic equation
,”
J. Acoust. Soc. Am.
130
,
2681
2686
(
2011
).
8.
D.
Outing
,
W.
Siegmann
,
M.
Collins
, and
E.
Westwood
, “
Generalization of the rotated parabolic equation to variable slopes
,”
J. Acoust. Soc. Am.
6
,
3534
3538
(
2006
).
9.
M.
Porter
,
The BELLHOP Manual and User’s Guide
(
HLS Research
,
La Jolla, CA
,
2011
).
10.
O.
Rodríguez
, “
General description of the BELLHOP ray tracing model
,” technical report,
2008
(Last viewed 06/15/2012).
11.
E.
Westwood
and
P.
Vidmar
, “
Eigenray finding and time series simulation in a layered-bottom ocean
,”
J. Acoust. Soc. Am.
81
,
912
924
(
1987
).
12.
H.
Weinberg
and
R.
Keenan
, “
Gaussian ray bundles for modeling high-frequency propagation loss under shallow-water conditions
,”
J. Acoust. Soc. Am.
100
,
1421
1431
(
1996
).
13.
http://www.siplab.fct.ualg.pt (Last viewed 06/15/2012).
14.
P.
Santos
,
P.
Felisberto
,
O.
Rodríguez
, and
S.
Jesus
, “
Geoacoustic matched-field inversion using a vector sensor array
,” in
Conference on Underwater Acoustic Measurements
,
Nafplion
,
Greece
(
2009
), pp.
29
34
.
15.
P.
Santos
,
O.
Rodríguez
,
P.
Felisberto
, and
S.
Jesus
, “
Seabed geoacoustic characterization with a vector sensor array
,”
J. Acoust. Soc. Am.
128
,
2652
2663
(
2010
).
16.
P.
Santos
,
P.
Felisberto
,
O.
Rodríguez
,
J.
Joao
, and
S.
Jesus
, “
Geometric and Seabed parameter estimation using a Vector Sensor Array—Experimental results from Makai experiment 2005
,” in
OCEANS2011
,
Santander
,
Spain
(
2011
), pp.
1
10
.
17.
M.
Popov
and
I.
Peník
, “
Computation of ray amplitudes in homogeneous media with curved interfaces
,”
Studia Geoph. Geod.
22
,
248
258
(
1978
).
18.
F.
Jensen
,
W.
Kuperman
,
M.
Porter
, and
H.
Schmidt
,
Computational Ocean Acoustics, AIP Series in Modern Acoustics and Signal Processing
(
AIP
,
New York
,
1994
), Chap. 3.
19.
M.
Popov
, “
Ray theory and Gaussian beam method for geophysicists
,” technical report EDUFBA, Universidade Federal da Bahia (
2002
).
20.
M.
Porter
and
H.
Bucker
, “
Gaussian beam tracing for computing ocean acoustic fields
,”
J. Acoust. Soc. Am.
82
,
1349
1359
(
1987
).
21.
P.
Papadakis
,
M.
Taroudakis
, and
J.
Papadakis
, “
Recovery of the properties of an elastic bottom using reflection coefficient measurements
,” in
Proceedings of the 2nd European Conference on Underwater Acoustics
,
Copenhagen
,
Denmark
(
1994
), Vol. II, pp.
943
948
.
22.
M.
Porter
and
Y.-C.
Liu
, “
Finite-Element Ray Tracing
,” in
Theoretical and Computational Acoustics
(
World Scientific Publishing
,
Singapore
,
1994
), Vol. 2, pp.
947
956
.
23.
H.
Schmidt
, “
SAFARI, seismo-acoustic fast field algorithm for range-independent enviroments. User’s guide
,” technical report, Saclant Undersea Research Centre (SM-113), La Spezia, Italy (1987).
24.
F.
Press
and
M.
Ewing
, “
Propagation of explosive sound in a liquid layer overlying a semi-infinite elastic solid
,”
Geophysics
15
,
426
446
(
1950
).
25.
P.
Felisberto
,
O.
Rodríguez
,
P.
Santos
, and S. Jesus, “
On the usage of the particle velocity field for bottom characterization
,” in
International Conference on Underwater Acoustic Measurements
,
Kos
,
Greece
(2011), pp.
19
24
.
26.
M.
Collins
,
User’s Guide for RAM Versions 1.0 and 1.0p
(
Naval Research Laboratory
,
Washington, DC
,
2006
).
You do not currently have access to this content.