Bistatic, long-range measurements of acoustic scattered returns from vertically extended, air-filled tubular targets were made during three distinct field experiments in fluctuating continental shelf waveguides. It is shown that Sonar Equation estimates of mean target-scattered intensity lead to large errors, differing by an order of magnitude from both the measurements and waveguide scattering theory. The use of the Ingenito scattering model is also shown to lead to significant errors in estimating mean target-scattered intensity in the field experiments because they were conducted in range-dependent ocean environments with large variations in sound speed structure over the depth of the targets, scenarios that violate basic assumptions of the Ingenito model. Green’s theorem based full-field modeling that describes scattering from vertically extended tubular targets in range-dependent ocean waveguides by taking into account nonuniform sound speed structure over the target’s depth extent is shown to accurately describe the statistics of the targets’ scattered field in all three field experiments. Returns from the man-made targets are also shown to have a very different spectral dependence from the natural target-like clutter of the dominant fish schools observed, suggesting that judicious multi-frequency sensing may often provide a useful means of distinguishing fish from man-made targets.

1.
C. I.
Malme
, “
Development of a high target strength passive acoustic reflector for low- frequency sonar applications
,”
IEEE J. Ocean. Eng.
19
,
438
448
(
1994
).
2.
P.
Ratilal
,
Y.
Lai
,
D.
Symonds
,
L. A.
Ruhlmann
,
J. R.
Preston
,
E. K.
Scheer
,
M. T.
Garr
,
C. W.
Holland
,
J. A.
Goff
, and
N. C.
Makris
, “
Long range acoustic imaging of the continental shelf environment: The Acoustic Clutter Reconnaissance Experiment 2001
,”
J. Acoust. Soc. Am.
117
,
1977
1998
(
2005
).
3.
P.
Ratilal
,
Y.
Lai
, and
N.
Makris
, “
Validity of the sonar equation and babinet’s principle for scattering in a stratified medium
,”
J. Acoust. Soc. Am.
112
,
1797
1816
(
2002
).
4.
R. J.
Urick
,
Principles of Underwater Sound
(
Mc-Graw Hill
,
New York
,
1983
), pp.
17
30
.
5.
F.
Ingenito
, “
Scattering from an object in a stratified medium
,”
J. Acoust. Soc. Am.
82
,
2051
2059
(
1987
).
6.
N. C.
Makris
,
P.
Ratilal
,
D. T.
Symonds
,
S.
Jagannathan
,
S.
Lee
, and
R.
Nero
, “
Fish population and behavior revealed by instantaneous continental-shelf-scale imaging
,”
Science
311
,
660
663
(
2006
).
7.
S.
Jagannathan
,
I.
Bertsatos
,
D. T.
Symonds
,
T.
Chen
,
H. T.
Nia
,
A.
Jain
,
M.
Andrews
,
Z.
Gong
,
R.
Nero
,
L.
Ngor
,
M.
Jech
,
O. R.
Godø
,
S.
Lee
,
P.
Ratilal
, and
N. C.
Makris
, “
Ocean acoustics waveguide remote sensing (OAWRS) of marine ecosystems
,”
Mar. Ecol. Prog. Ser.
395
,
137
160
(
2009
).
8.
N. C.
Makris
,
P.
Ratilal
,
S.
Jagannathan
,
Z.
Gong
,
M.
Andrews
,
I.
Bertsatos
,
O.
Godoe
,
R.
Nero
, and
M.
Jech
, “
Critical population density triggers rapid formation of vast oceanic fish shoals
,”
Science
323
,
1734
1737
(
2009
).
9.
Z.
Gong
,
M.
Andrews
,
S.
Jagannathan
,
R.
Patel
,
J. M.
Jech
,
N. C.
Makris
, and
P.
Ratilal
, “
Low-frequency target strength and abundance of shoaling atlantic herring clupea harengus in the gulf of maine during the ocean acoustic waveguide remote sensing (OAWRS) 2006 experiment
,”
J. Acoust. Soc. Am.
127
,
104
123
(
2010
).
10.
E. T.
Küsel
and
P.
Ratilal
, “
Effects of incident field refraction on scattered field from vertically extended cylindrical targets in range-dependent ocean waveguides
,”
J. Acoust. Soc. Am.
125
,
1930
1936
(
2009
).
11.
G. L.
Turin
, “
An introduction to matched filters
,”
IRE Trans. Inf. Theory
IF6
,
311
329
(
1960
).
12.
N.
Levanon
,
Radar Principles
(
Wiley
,
New York
,
1988
), pp.
101
120
.
13.
M.
Andrews
,
T.
Chen
, and
P.
Ratilal
, “
Empirical dependence of acoustic transmission scintillation statistics on bandwidth, frequency, and range on New Jersey continental shelf
,”
J. Acoust. Soc. Am.
125
,
111
124
(
2009
).
14.
A.
Galinde
,
N.
Donabed
,
M.
Andrews
,
S.
Lee
,
N. C.
Makris
, and
P.
Ratilal
, “
Range-dependent waveguide scattering model calibrated for bottom reverberation in a continental shelf environments
,”
J. Acoust. Soc. Am.
123
,
1270
1281
(
2008
).
15.
M.
Andrews
,
Z.
Gong
, and
P.
Ratilal
, “
Effects of multiple scattering, attenuation and dispersion in waveguide sensing of fish
,”
J. Acoust. Soc. Am.
130
,
1253
1271
(
2011
).
16.
M. D.
Collins
, “
A split-step Padé solution for the parabolic equation method
,”
J. Acoust. Soc. Am.
93
,
1736
1742
(
1993
).
17.
N. C.
Makris
and
P.
Ratilal
, “
OAWRS Gulf of Maine 2006 Experiment Cruise Report
,”
Technical Report, MIT and NU MA
(
2006
).
18.
N. C.
Makris
and
P.
Ratilal
, “
A unified model for reverberation and submerged object scattering in a stratified ocean waveguide
,”
J. Acoust. Soc. Am.
109
,
909
941
(
2001
).
19.
N. C.
Makris
, “
A spectral approach to 3-D object scattering in layered media applied to scattering from submerged spheres
,”
J. Acoust. Soc. Am.
104
,
2105
2113
(
1998
).
20.
R. H.
Hackmann
and
G. S.
Sammelmann
, “
Multiple scattering analysis for a target in an ocean waveguide
,”
J. Acoust. Soc. Am.
84
,
1813
1825
(
1988
).
21.
P.
Ratilal
and
N. C.
Makris
, “
Mean and covariance of the forward field propagated through a stratified ocean waveguide with three-dimensional random inhomogeneities
,”
J. Acoust. Soc. Am.
118
,
3532
3559
(
2005
).
22.
J. J.
Bowman
,
T. B. A.
Senior
, and
P. L. E.
Uslenghi
,
Electromagnetic and Acoustic Scattering by Simple Shapes
(
Hemisphere Publishing
,
New York
,
1987
), pp.
1
20
.
23.
N. C.
Makris
and
J. M.
Berkson
, “
Long-range backscatter from the Mid-Atlantic Ridge
,”
J. Acoust. Soc. Am.
95
,
1865
1881
(
1994
).
24.
N. C.
Makris
,
L. Z.
Avelino
, and
R.
Menis
, “
Deterministic reverberation from ocean ridges
,”
J. Acoust. Soc. Am.
97
,
3547
3574
(
1995
).
25.
J. W.
Goodman
,
Statistical Optics
(
Wiley
,
New York
,
1985
), p.
108
.
26.
G.
Bergmann
, “
Intensity fluctuations
,” in
The Physics of Sound in the Sea, Part 1: Transmission
(
National Defense Research Committee
,
Washington, DC
,
1948
), pp.
158
173
.
27.
I.
Dyer
, “
Statistics of sound propagation in the ocean
,”
J. Acoust. Soc. Am.
48
,
337
345
(
1970
).
28.
N. C.
Makris
, “
The effect of saturated transmission scintillation on ocean acoustic intensity measurements
,”
J. Acoust. Soc. Am.
100
,
769
783
(
1996
).
29.
J. A.
Goff
,
B. J.
Kraft
,
L. A.
Mayer
,
S. G.
Schock
,
C. K.
Sommerfield
,
H. C.
Olson
,
S. P. S.
Gulick
, and
S.
Nordfjord
, “
Seabed characterization on the New Jersey middle and outer shelf: correlatability and spatial variability of seafloor sediment properties
,”
Mar. Geol.
209
,
147
172
(
2004
).
30.
T.
Chen
,
P.
Ratilal
, and
N. C.
Makris
, “
Mean and variance of the forward field propagated through three-dimensional random internal waves in a continental-shelf waveguide
,”
J. Acoust. Soc. Am.
118
,
3560
3574
(
2005
).
31.
M.
Andrews
,
Z.
Gong
, and
P.
Ratilal
, “
High-resolution population density imaging of random scatterers through cross-spectral coherence in matched filter variance
,”
J. Acoust. Soc. Am.
126
,
1057
1068
(
2009
).
32.
M. B.
Porter
, “
The Kraken normal mode program, user’s manual
,”
Technical Report, SACLANT Undersea Research Centre, La Spezia, Italy
(
1991
).
33.
H. C.
van de Hulst
,
Light Scattering by Small Particles
(
Dover
,
New York
,
1956
), pp.
297
322
.
34.
J. S.
Allen
,
R. C.
Beardsley
,
J. O.
Blanton
,
W. C.
Boicort
,
B.
Butman
,
L. K.
Coachman
,
T. H. K. A.
Huyer
,
T. C.
Royer
,
J. D.
Schumacher
,
R. L.
Smith
,
W.
Sturges
, and
C. D.
Winant
, “
Physical oceanography of continental shelves
,”
Rev. Geophys. Space Phys.
21
,
1149
1181
(
1983
).
35.
G. T.
Csanady
, “
On the theories that underlie our understanding of continental shelf circulation
,”
J. Oceanogr.
53
,
207
229
(
1997
).
36.
Z. R.
Hallock
and
R. L.
Field
, “
Internal-wave energy fluxes on the New Jersey shelf
,”
J. Phys. Oceanogr.
35
,
3
12
(
2005
).
You do not currently have access to this content.