This paper presents a method for simultaneously identifying both the elastic and anelastic properties of the porous frame of anisotropic open-cell foams. The approach is based on an inverse estimation procedure of the complex stiffness matrix of the frame by performing a model fit of a set of transfer functions of a sample of material subjected to compression excitation in vacuo. The material elastic properties are assumed to have orthotropic symmetry and the anelastic properties are described using a fractional-derivative model within the framework of an augmented Hooke’s law. The inverse estimation problem is formulated as a numerical optimization procedure and solved using the globally convergent method of moving asymptotes. To show the feasibility of the approach a numerically generated target material is used here as a benchmark. It is shown that the method provides the full frequency-dependent orthotropic complex stiffness matrix within a reasonable degree of accuracy.

1.
A. T.
Huber
and
L. J.
Gibson
, “
Anisotropy of foams
,”
J. Mater. Sci.
23
,
3031
3040
(
1988
).
2.
W. E.
Warren
and
A. M.
Kraynik
, “
The linear elastic properties of open-cell foams
,”
J. Appl. Mech.
55
,
341
346
(
1988
).
3.
A.
Geslain
,
O.
Dazel
,
J.-P.
Groby
,
S.
Sahraoui
, and
W.
Lauriks
, “
Influence of static compression on mechanical parameters of acoustic foams
,”
J. Acoust. Soc. Am.
130
,
818
825
(
2011
).
4.
H. J.
Rice
and
P.
Göransson
, “
A dynamical model of light fibrous materials
,”
Int. J. Mech. Sci.
41
,
561
579
(
1999
).
5.
P.
Göransson
and
P.
Lemarinier
, “
Sound transmission through double-panel systems lined with soaked insulation materials
,” in
Fourth AIAA/CEAS Aeroacoustics Conference
, Paper No. AIAA–98-2345 (
Toulouse
,
France
) (2–4 June
1998
).
6.
M.
Melon
,
E.
Mariez
,
C.
Ayrault
, and
S.
Sahraoui
, “
Acoustical and mechanical characterization of anisotropic open-cell foams
,”
J. Acoust. Soc. Am.
104
,
2622
(
1998
).
7.
E.
Mariez
,
S.
Sahraoui
, and
J. F.
Allard
, “
Elastic constants of polyurethane foam’s skeleton for biot model
,” in
Internoise 96
,
951
954
(
Institute of Acoustics
,
Liverpool, UK
,
1996
).
8.
S.
Sahraoui
,
E.
Mariez
, and
M.
Etchessahar
, “
Linear elastic properties of anisotropic open-cell foams
,”
J. Acoust. Soc. Am.
110
,
635
(
2001
).
9.
S.
Sahraoui
,
E.
Mariez
, and
M.
Etchessahar
, “
Mechanical testing of polymeric foams at low frequency
,”
Polym. Test.
20
,
93
96
(
2000
).
10.
L.
Jaouen
,
A.
Renault
, and
M.
Deverge
, “
Elastic and damping characterizations of acoustical porous materials: Available experimental methods and applications to a melamine foam
,”
Appl. Acoust.
69
,
1129
1140
(
2008
).
11.
T.
Pritz
, “
Transfer function method for investigating the complex modulus of acoustic materials: spring-like specimen
,”
J. Sound Vib.
72
,
317
341
(
1980
).
12.
T.
Pritz
, “
Transfer function method for investigating the complex modulus of acoustic materials: Rod-like specimen
,”
J. Sound Vib.
81
,
359
376
(
1982
).
13.
T.
Pritz
, “
Frequency dependence of frame dynamic characteristics of mineral and glass wool materials
,”
J. Sound Vib.
106
,
161
169
(
1986
).
14.
T.
Pritz
, “
Dynamic Young’s modulus and loss factor of plastic foams for impact sound isolation
,”
J. Sound Vib.
178
,
315
322
(
1994
).
15.
M. A.
Biot
, “
Theory of stress-strain relations in anisotropic viscoelasticity and relaxation phenomena
,”
J. Appl. Phys.
25
,
1385
1391
(
1954
).
16.
K.
Dovstam
and
M.
Dalenbring
, “
Damping function estimation based on modal receptance models and neural nets
,”
Comput. Mech.
19
,
271
286
(
1997
).
17.
M.
Dalenbring
, “
Damping function estimation based on measured vibration frequency responses and finite-element displacement modes
,”
Mech. Syst. Sig. Process.
13
,
547
569
(
1999
).
18.
M.
Dalenbring
, “
An explicit formulation of a three-dimensional material damping model with transverse isotropy
,”
Int. J. Solids Struct.
39
,
225
249
(
2002
).
19.
M.
Dalenbring
, “
Experimental material damping estimation for planar isotropic laminate structures
,”
Int. J. Solids Struct.
39
,
5053
5079
(
2002
).
20.
R. L.
Bagley
and
P. J.
Torvik
, “
A theoretical basis for the application of fractional calculus to viscoelasticity
,”
J. Rheol.
27
,
201
(
1983
).
21.
R. L.
Bagley
and
P. J.
Torvik
,
“Fractional calculus—A different approach to the analysis of viscoelastically damped structures”
AIAA J.
21
,
741
748
(
1983
).
22.
K.
Dovstam
, “
Augmented Hooke’s law based on alternative stress relaxation models
,”
Comput. Mech.
26
,
90
103
(
2000
).
23.
M.
Caputo
and
F.
Mainardi
, “
A new dissipation model based on memory mechanism
,”
Pure Appl. Geophys.
91
,
134
147
(
1971
).
24.
M.
Caputo
and
F.
Mainardi
, “
Linear models of dissipation in anelastic solids
,”
Riv. Nuovo Cimento
1
,
161
198
(
1971
).
25.
T.
Pritz
, “
Analysis of four-parameter fractional derivative model of real solid materials
,”
J. Sound Vib.
195
,
103
115
(
1996
).
26.
T.
Pritz
, “
Five-parameter fractional derivative model for polymeric damping materials
,”
J. Sound Vib.
265
,
935
952
(
2003
).
27.
S.-Y.
Kim
and
D.-H.
Lee
, “
Identification of fractional-derivative-model parameters of viscoelastic materials from measured FRFs
,”
J. Sound Vib.
324
,
570
586
(
2009
).
28.
A. L.
Araújo
,
C. M. M.
Soares
,
C. A. M.
Soares
, and
J.
Herskovits
,
“Optimal design and parameter estimation of frequency dependent viscoelastic laminated sandwich composite plates”
Comp. Struct.
92
,
2321
2327
(
2010
).
29.
M. A.
Biot
, “
Theory of deformation of a porous viscoelastic anisotropic solid
,”
J. Appl. Phys.
27
,
459
467
(
1956
).
30.
M. A.
Biot
, “
Mechanics of deformation and acoustic propagation in porous media
,”
J. Appl. Phys.
33
,
1482
1498
(
1962
).
31.
N. E.
Hörlin
and
P.
Göransson
, “
Weak, anisotropic symmetric formulations of Biot’s equations for vibro-acoustic modelling of porous elastic materials
,”
Int. J. Numer. Methods Eng.
84
,
1519
1540
(
2010
).
32.
R. M.
Jones
,
Mechanics of Composite Materials
(
Taylor and Francis
,
Philadelphia, PA
,
1999
), pp.
519
.
33.
O.
Doutres
,
N.
Dauchez
,
J.-M.
Génevaux
, and
G.
Lemarquand
, “
On the use of a loudspeaker for measuring the viscoelastic properties of sound absorbing materials
,”
J. Acoust. Soc. Am.
124
,
EL335
EL340
(
2008
).
34.
A. N.
Norris
, “
The isotropic material closest to a given anisotropic material
,”
J. Mech. Mater. Struct.
1
,
223
238
(
2006
).
35.
J.
Rodríguez Ahlquist
, “Porous foam characterization and simulation,” Master’s thesis,
Royal Institute of Technology
, Stockholm, Sweden,
2002
, pp.
92
.
36.
K.
Svanberg
, “
A class of globally convergent optimization methods based on conservative convex separable approximations
,”
SIAM J. Optim.
12
,
555
(
2002
).
37.
K.
Svanberg
, “
The method of moving asymptotes—A new method for structural optimization
,”
Int. J. Numer. Methods Eng.
24
,
359
373
(
1987
).
You do not currently have access to this content.