Previously, passive cavitation imaging has been described in the context of continuous-wave high-intensity focused ultrasound thermal ablation. However, the technique has potential use as a feedback mechanism for pulsed-wave therapies, such as ultrasound-mediated drug delivery. In this paper, results of experiments and simulations are reported to demonstrate the feasibility of passive cavitation imaging using pulsed ultrasound insonations and how the images depend on pulsed ultrasound parameters. The passive cavitation images were formed from channel data that was beamformed in the frequency domain. Experiments were performed in an invitro flow phantom with an experimental echo contrast agent, echogenic liposomes, as cavitation nuclei. It was found that the pulse duration and envelope have minimal impact on the image resolution achieved. The passive cavitation image amplitude scales linearly with the cavitation emission energy. Cavitation images for both stable and inertial cavitation can be obtained from the same received data set.

1.
C. M. H.
Newman
and
T.
Bettinger
, “
Gene therapy progress and prospects: Ultrasound for gene transfer
,”
Gene Ther.
14
,
465
475
(
2007
).
2.
S.
Hernot
and
A. L.
Klibanov
, “
Microbubbles in ultrasound-triggered drug and gene delivery
,”
Adv. Drug Delivery Rev.
60
,
1153
1166
(
2008
).
3.
Y.
Zhou
,
J.
Cui
, and
C. X.
Deng
, “
Dynamics of sonoporation correlated with acoustic cavitation activities
,”
Biophys. J.
94
,
L51
L53
(
2008
).
4.
J.
Wu
and
W. L.
Nyborg
, “
Ultrasound, cavitation bubbles and their interaction with cells
,”
Adv. Drug Delivery Rev.
60
,
1103
1116
(
2008
).
5.
T. J.
Evjen
,
E. A.
Nilssen
,
R. A.
Fowler
,
S.
Røgnavaldsson
,
M.
Brandl
, and
S. L.
Fossheim
, “
Lipid membrane composition influences drug release from dioleoylphosphatidylethanolamine-based liposomes on exposure to ultrasound
,”
Int. J. Pharm.
406
,
114
116
(
2011
).
6.
E. C.
Everbach
and
C. W.
Francis
, “
Cavitational mechanisms in ultrasound-accelerated thrombolysis at 1 MHz
,”
Ultrasound Med. Biol.
26
,
1153
1160
(
2000
).
7.
A. F.
Prokop
,
A.
Soltani
, and
R. A.
Roy
, “
Cavitational mechanisms in ultrasound-accelerated fibrinolysis
,”
Ultrasound Med. Biol.
33
,
924
933
(
2007
).
8.
S.
Datta
,
C.-C.
Coussios
,
A. Y.
Ammi
,
T. D.
Mast
,
G. M.
de Courten-Myers
, and
C. K.
Holland
, “
Ultrasound-enhanced thombolysis using Definity as a cavitation nucleation agent
,”
Ultrasound Med. Biol.
34
,
1421
1433
(
2008
).
9.
A. D.
Maxwell
,
C. A.
Cain
,
A. P.
Duryea
,
L.
Yuan
,
H. S.
Gurm
, and
Z.
Xu
, “
Noninvasive thrombolysis using pulsed ultrasound cavitation therapy – histotripsy
,”
Ultrasound Med. Biol.
35
,
1982
1994
(
2009
).
10.
K. E.
Hitchcock
,
N. M.
Ivancevich
,
K. J.
Haworth
,
D. N. C.
Stamper
,
D. C.
Vela
,
J. T.
Sutton
,
G. J.
Pyne-Geithman
, and
C. K.
Holland
, “
Ultrasound-enhanced rt-PA thrombolysis in an ex vivo porcine carotid artery model
,”
Ultrasound Med. Biol.
37
,
1240
1251
(
2011
).
11.
H.
Tang
,
C.
Chun
,
J.
Wang
,
D.
Blankschtein
, and
R.
Langer
, “
An investigation of the role of cavitation in low-frequency ultrasound-mediated transdermal drug transport
,”
Pharma. Res.
19
,
1160
1169
(
2002
).
12.
A.
Tezel
,
A.
Sens
, and
S.
Mitragotri
, “
Investigations of the role of cavitation in low-frequency sonophoresis using acoustic spectroscopy
,”
J. Pharma. Sci.
91
,
444
453
(
2002
).
13.
A.
Tezel
and
S.
Mitragotri
, “
Interactions of intertial cavitation bubbles with stratum corneum lipid bilayers during low-frequency sonophoresis
,”
Biophys. J.
85
,
3502
3512
(
2003
).
14.
S. L.
Poliachik
,
W. L.
Chandler
,
R. J.
Ollos
,
M. R.
Bailey
, and
L. A.
Crum
, “
The relation between cavitation and platelet aggregation during exposure to high-intensity focused ultrasound
,”
Ultrasound Med. Biol.
30
,
261
269
(
2004
).
15.
G. R.
ter Haar
and
C.-C.
Coussios
, “
High intensity focused ultrasound: Physical principles and devices
,”
Int. J. Hyperthermia
23
,
89
104
(
2007
).
16.
S. D.
Nandlall
,
E.
Jackson
, and
C.-C.
Coussios
, “
Real-time passive acoustic monitoring of HIFU-induced tissue damage
,”
Ultrasound Med. Biol.
37
,
922
934
(
2011
).
17.
ANSI technical report: Bubble detection and cavitation monitoring
,” Technical Report ANSI S1.24 TR-2002, American National Standards Institute Inc.,
2007
.
18.
A. A.
Atchley
,
L. A.
Frizzell
,
R. E.
Apfel
,
C. K.
Holland
,
S. I.
Madanshetty
, and
R. A.
Roy
, “
Thresholds for cavitation produced in water by pulsed ultrasound
,”
Ultrasonics
26
,
280
285
(
1988
).
19.
R. A.
Roy
,
S. I.
Madanshett
, and
R. E.
Apfel
, “
An acoustic backscattering technique for the detection of transient cavitation produced by microsecond pulses of ultrasound
,”
J. Acoust. Soc. Am.
87
,
2451
2458
(
1990
).
20.
M. F. M.
Osborne
and
F. H.
Holland
, “
The acoustical concomitants of cavitation and boiling, produced by a hot wire
,”
J. Acoust. Soc. Am.
19
,
13
29
(
1947
).
21.
J.
McLaughlan
,
I.
Rivens
,
T.
Leighton
, and
G.
ter Haar
, “
A study of bubble activity generated in ex vivo tissue by high intensity focused ultrasound
,”
Ultrasound Med. Biol.
36
,
1327
1344
(
2010
).
22.
C.-C.
Coussios
and
R. A.
Roy
, “
Applications of acoustics and cavitation to noninvasive therapy and drug delivery
,”
Ann. Rev. Fluid Mech.
40
,
395
420
(
2008
).
23.
C. H.
Farny
,
R. G.
Holt
, and
R. A.
Roy
, “
Temporal and spatial detection of HIFU-induced inertial and hot-vapor cavitation with a diagnostic ultrasound system
,”
Ultrasound Med. Biol.
35
,
603
615
(
2009
).
24.
T. G.
Leighton
,
The Acoustic Bubble
(
Academic
,
San Diego
,
1997
), p.
414
420
.
25.
E. A.
Neppiras
, “
Acoustic cavitation
,”
Phys. Lett.
61
,
159
251
(
1980
).
26.
S.
Datta
,
C.-C.
Coussios
,
L. E.
McAdory
,
J.
Tan
,
T.
Porter
,
G.
de Courten-Myers
, and
C. K.
Holland
, “
Correlation of cavitation with ultrasound enhancement of thrombolysis
,”
Ultrasound Med. Biol.
32
,
1257
1267
(
2006
).
27.
C.-C.
Coussios
,
C. H.
Farny
,
G. R.
ter Haar
, and
R. A.
Roy
, “
Role of acoustic cavitation in the delivery and monitoring of cancer treatment by high-intensity focused ultrasound (HIFU)
,”
Int. J. Hyperthermia
23
,
105
120
(
2007
).
28.
B. A.
Rabkin
,
V.
Zderic
, and
S.
Vaezy
, “
Hyperecho in ultrasound images of HIFU therapy: Involvement of cavitation
Ultrasound Med. Biol.
31
,
947
956
(
2005
).
29.
T. D.
Mast
,
V. A.
Salgaonkar
,
C.
Karunakaran
,
J. A.
Besse
,
S.
Datta
, and
C. K.
Holland
, “
Acoustic emissions during 3.1 MHz ultrasound bulk ablation invivo
,”
Ultrasound Med. Biol.
34
,
1434
1448
(
2008
).
30.
V. A.
Salgaonkar
,
S.
Datta
,
C. K.
Holland
, and
T. D.
Mast
, “
Passive cavitation imaging with ultrasound arrays
,”
J. Acoust. Soc. Am.
126
,
3071
3083
(
2009
).
31.
M.
Gyöngy
,
M.
Arora
,
J. A.
Nobel
, and
C.-C.
Coussios
, “
Use of passive arrays for characterization and mapping of cavitation activity during HIFU exposure
,”
IEEE Ultrason. Symp.
,
871
874
(
2008
).
32.
M.
Gyöngy
and
C.-C.
Coussios
, “
Passive spatial mapping of inertial cavitation during HIFU exposure
,”
IEEE Trans. Biomed. Eng.
57
,
48
56
(
2010
).
33.
C. R.
Jensen
,
R. W.
Ritchie
,
M.
Gyöngy
,
J. R. T.
Collin
,
T.
Leslie
, and
C.-C.
Coussios
, “
Spatiotemporal monitoring of high-intensity focused ultrasound therapy with passive acoustic mapping
,”
Radiology
262
,
252
261
(
2012
).
34.
S. J.
Norton
and
I. J.
Won
, “
Time exposure acoustics
,”
IEEE Trans. Geosci. Remote Sens.
38
,
1337
1343
(
2000
).
35.
M.
Gyöngy
and
C.-C.
Coussios
, “
Passive cavitation mapping for localization and tracking of bubble dynamics
,”
J. Acoust. Soc. Am.
128
,
EL175
EL180
(
2010
).
36.
D. A.
King
and
W. D.
O’Brien
, “
Comparison bewteen maximum radial expansion of ultrasound contrast agents and experimental postexcitation signal results
,”
J. Acoust. Soc. Am.
129
,
114
121
(
2011
).
37.
S.-L.
Huang
,
A. J.
Hamilton
,
A.
Nagaraj
,
S. D.
Tiukinhoy
,
M. E.
Klegerman
,
D. D.
McPherson
, and
R. C.
MacDonald
, “
Improving ultrasound reflectivity and stability of echogenic liposomal dispersions for use as targeted ultrasound contrast agents
,”
J. Pharma. Sci.
90
,
1917
1926
(
2001
).
38.
K. D.
Buchanan
,
S.
Huang
,
H.
Kim
,
R. C.
MacDonald
, and
D. D.
McPherson
, “
Echogenic liposome compostions for increased retention of ultrasound reflectivity at physiologic temperature
,”
J. Pharma. Sci.
97
,
2242
2249
(
2008
).
39.
J. A.
Kopechek
,
K. J.
Haworth
,
J. L.
Raymond
,
T. D.
Mast
,
S. R.
Perrin
 Jr.
,
M. E.
Klegerman
,
S.
Huang
,
T. M.
Porter
,
D. D.
McPherson
, and
C. K.
Holland
, “
Acoustic characterization of echogenic liposomes: Frequency-dependent attenuation and backscatter
,”
J. Acoust. Soc. Am.
130
,
3472
3481
(
2011
).
40.
S.
Paul
,
D.
Russakow
,
R.
Nahire
,
T.
Nandy
,
A. H.
Ambre
,
K.
Katti
,
S.
Mallik
, and
K.
Sarkar
, “
In vitro measurement of attenuation and nonlinear scattering from echogenic liposomes
,”
Ultrasonics
, doi: (
2012
).
41.
A.
Hamilton
,
S.-L.
Huang
,
D.
Warnick
,
A.
Stein
,
M.
Rabbat
,
T.
Madhav
,
B.
Kane
,
A.
Nagaraj
,
M.
Klegerman
,
R.
MacDonald
, and
D.
McPherson
, “
Left ventricular thrombus enhancement after intravenous injection of echogenic immunoliposomes: Studies in a new experimental model
,”
Circulation
105
,
2772
2778
(
2002
).
42.
D. A. B.
Smith
,
T. M.
Porter
,
J.
Martinez
,
S.
Huang
,
R. C.
MacDonald
,
D. D.
McPherson
, and
C. K.
Holland
, “
Destruction thresholds of echogenic liposomes with clincal diagnostic ultrasound
,”
Ultrasound Med. Biol.
33
,
797
809
(
2007
).
43.
D. A. B.
Smith
,
S. S.
Vaidya
,
J. A.
Kopechek
,
S.-L.
Huang
,
M. E.
Klegerman
,
D. D.
McPherson
, and
C. K.
Holland
, “
Ultrasound-triggered release of recombinant tissue-type plasminogen activator from echogenic liposomes
,”
Ultrasound Med. Biol.
36
,
145
157
(
2010
).
44.
S.-L.
Huang
and
R. C.
MacDonald
, “
Acoustically active liposomes for drug encapsulation and ultrasound-triggered release
,”
Biochim. Biophys. Acta
1665
,
134
141
(
2004
).
45.
S.-L.
Huang
,
P. H.
Kee
,
H.
Kim
,
M. R.
Moody
,
S. M.
Chrzanowski
,
R. C.
MacDonald
, and
D. D.
McPherson
, “
Nitric oxide-loaded echogenic liposomes for nitric oxide delivery and inhibition of intimal hyperplasia
,”
J. Am. College Cardiol.
54
,
652
659
(
2009
).
46.
G. J.
Shaw
,
J. M.
Meunier
,
S.-L.
Huang
,
C. J.
Lindsell
,
D. D.
McPherson
, and
C. K.
Holland
, “
Ultrasound-enhanced thrombolysis with tPA-loaded echogenic liposomes
,”
Thombosis Res.
124
,
306
310
(
2009
).
47.
M. E.
Klegerman
,
M.
Wassler
,
S.-L.
Huang
,
Y.
Zou
,
H.
Kim
,
H. S.
Shelat
,
C. K.
Holland
,
Y.-J.
Geng
, and
D. D.
McPherson
, “
Liposomal modular complexes for simultaneous targeted delivery of bioactive gases and therapeutics
,”
J. Controll
. Release
142
,
326
331
(
2010
).
48.
L. Y. L.
Mo
,
D.
Debusschere
,
W.
Bai
,
D.
Napolitano
,
A.
Irish
,
S.
Marschall
,
G. W.
McLaughline
,
Z.
Yang
,
P. L.
Carson
, and
J. B.
Fowlkes
, “
Compact ultrasound scanner with built-in raw data acquisition capabilities
,”
IEEE Ultrasonics Symp.
,
2259
2262
(
2007
).
49.
L. Y. L.
Mo
,
D.
Debusschere
,
G.
McLaughlin
,
D.
Napolitano
,
W.
Bai
,
K.
Fowkes
,
A.
Irish
,
X.
Wang
,
J. B.
Fowlkes
, and
P. L.
Carson
, “
Compact ultrasound scanner with simultaneous parallel channel data acquisition capabilities
,”
IEEE Ultrasonics Symp
,
1
,
1342
1345
(
2008
).
50.
T. D.
Mast
, “
Fresnel approximations for acoustic fields of rectangularly symmetric sources
,”
J. Acoust. Soc. Am.
121
,
3311
3322
(
2007
).
51.
K. E.
Hitchcock
,
D. N.
Caudell
,
J. T.
Sutton
,
M. E.
Klegerman
,
D.
Vela
,
G. J.
Pyne-Geithman
,
T.
Abruzzo
,
P. E. P.
Cry
,
Y.-J.
Geng
,
D. D.
McPherson
, and
C. K.
Holland
, “
Ultrasound-enhanced delivery of targeted echogenic liposomes in a novel ex vivo mouse aorta model
,”
J. Controll. Release
144
,
288
295
(
2010
).
52.
D. E.
Goertz
,
C.
Wright
, and
K.
Hynynen
, “
Contrast agent kinetics in the rabbit brain during exposure to therapeutic ultrasound
,”
Ultrasound Med. Biol.
36
,
916
924
(
2010
).
You do not currently have access to this content.