This paper analyzes the interaction between the vocal folds and vocal tract at phonation onset due to the acoustical coupling between both systems. Data collected from a mechanical replica of the vocal folds show that changes in vocal tract length induce fluctuations in the oscillation threshold values of both subglottal pressure and frequency. Frequency jumps and maxima of the threshold pressure occur when the oscillation frequency is slightly above a vocal tract resonance. Both the downstream and upstream vocal tracts may produce those same effects. A simple mathematical model is next proposed, based on a lumped description of tissue mechanics, quasi-steady flow and one-dimensional acoustics. The model shows that the frequency jumps are produced by saddle-node bifurcations between limit cycles forming a classical pattern of a cusp catastrophe. The transition from a low frequency oscillation to a high frequency one may be achieved through two different paths: in case of a large acoustical coupling (narrow vocal tract) or high subglottal pressure, the bifurcations are crossed, which causes a frequency jump with a hysteresis loop. By reducing the acoustical coupling (wide vocal tract) or the subglottal pressure, a path around the bifurcations may be followed with a smooth frequency variation.

1.
Alipour
,
F.
,
Montequin
,
D.
, and
Tayama
,
N.
(
2001
). “
Aerodynamic profiles of a hemilarynx with a vocal tract
,”
Ann. Otol. Rhinol. Laryngol.
110
,
550
555
.
2.
Arneodo
,
E. M.
, and
Mindlin
,
G. B.
(
2009
). “
Source-tract coupling in birdsong production
,”
Phys. Rev. E
79
,
061921
.
3.
Bailly
,
L.
,
Henrich
,
H.
, and
Pelorson
,
X.
(
2010
). “
Vocal fold and ventricular fold vibration in period-doubling phonation: Physiological description and aerodynamic modeling
,”
J. Acoust. Soc. Am.
127
,
3212
3222
.
4.
Berry
,
D.
,
Herzel
,
H.
,
Titze
,
I. R.
, and
Story
,
B. H.
(
1996
). “
Bifurcations in excised larynx experiments
,”
J. Voice
10
,
129
138
.
5.
Cisonni
,
J.
,
Van Hirtum
,
A.
,
Pelorson
,
X.
, and
Lucero
,
J. C.
(
2011
). “
The influence of geometrical and mechanical input parameters on theoretical models of phonation
,”
Acta Acust. United Acust.
97
,
291
302
.
6.
Fant
,
G.
(
1970
).
Acoustic Theory of Speech Production
(
Mouton
,
The Hague
), pp.
1
26
.
7.
Fulcher
,
L. P.
,
Scherer
,
R. C.
,
Melnykov
,
A.
,
Gateva
,
V.
, and
Limes
,
M. E.
(
2006
). “
Negative coulomb damping, limit cycles, and self-oscillation of the vocal folds
,”
Am. J. Phys.
74
,
386
393
.
8.
Gilbert
,
J.
,
Ponthus
,
S.
, and
Petiot
,
J. F.
(
1998
). “
Artificial buzzing lips and brass instruments: Experimental results
,”
J. Acoust. Soc. Am.
104
,
1627
1632
.
9.
Hale
,
J. K.
, and
Lunel
,
S. M. V.
(
1993
).
Introduction to Functional Differential Equations
(
Springer
,
New York
), pp.
331
335
.
10.
Hatzikirou
,
H.
,
Fitch
,
W. T.
, and
Herzel
,
H.
(
2006
). “
Voice instabilities due to source-tract interactions
,”
Acta Acust. United Acust.
92
,
468
475
.
11.
Ishizaka
,
K.
, and
Matsudaira
,
M.
(
1972
). “
Theory of vocal cord vibration
,”
Rep. Univ. Electro-Comm.
23
,
107
136
.
12.
Jiang
,
J. J.
, and
Tao
,
C.
(
2007
). “
The minimum glottal airflow to initiate vocal fold oscillation
,”
J. Acoust. Soc. Am.
121
,
2873
2881
.
13.
Koenig
,
L. L.
,
Fuchs
,
S.
, and
Lucero
,
J. C.
(
2011
). “
Effects of consonant manner and vowel height on intraoral pressure and articulatory contact at voicing offset and onset for voiceless obstruents
,”
J. Acoust. Soc. Am.
129
,
3233
3244
.
14.
Laje
,
R.
,
Gardner
,
T. J.
, and
Mindlin
,
G. B.
(
2001
). “
Continuous model for vocal fold oscillations to study the effect of feedback
,”
Phys. Rev. E
64
,
056201
.
15.
Laje
,
R.
,
Gardner
,
T. J.
, and
Mindlin
,
G. B.
(
2002
). “
Neuromuscular control of vocalizations in birdsong: A model
,”
Phys. Rev. E
65
,
051921
.
16.
Laje
,
R.
, and
Mindlin
,
G. B.
(
2005
). “
Modeling source-source and source-filter acoustic interaction in birdsong
,”
Phys. Rev. E
72
,
036218
.
17.
Lous
,
N. J. C.
,
Hofmans
,
G. C. J.
,
Veldhuis
,
R. N. J.
, and
Hirschberg
,
A.
(
1998
). “
A symmetrical two-mass vocal-fold model coupled to vocal tract and trachea, with application to prosthesis design
,”
Acustica
84
,
1135
1150
.
18.
Lucero
,
J. C.
(
1999
). “
Theoretical study of the hysteresis phenomenon at vocal fold oscillation onset-offset
,”
J. Acoust. Soc. Am.
105
,
423
431
.
19.
Lucero
,
J. C.
, and
Koenig
,
L. L.
(
2007
). “
On the relation between the phonation threshold lung pressure and the oscillation frequency of the vocal folds
,”
J. Acoust. Soc. Am.
121
,
3280
3283
.
20.
Lucero
,
J. C.
,
Koenig
,
L. L.
,
Lourenço
,
K. G.
,
Ruty
,
N.
, and
Pelorson
,
X.
(
2011
). “
A lumped mucosal wave model of the vocal folds revisited: Recent extensions and oscillation hysteresis
,”
J. Acoust. Soc. Am.
129
,
1568
1579
.
21.
Lucero
,
J. C.
,
Van Hirtum
,
A.
,
Ruty
,
N.
,
Cisonni
,
J.
, and
Pelorson
,
X.
(
2009
). “
Validation of theoretical models of phonation threshold pressure with data from a vocal fold mechanical replica
,”
J. Acoust. Soc. Am.
125
,
632
635
.
22.
Mergell
,
P.
, and
Herzel
,
H.
(
1997
). “
Modelling biphonation—The role of the vocal tract
,”
Speech Commun.
22
,
141
154
.
23.
Robinson
,
M. P.
, and
Clegg
,
J.
(
2005
). “
Improved determination of q-factor and resonant frequency by a quadratic curve-fitting method
,”
IEEE Trans. Electromagn. Compat.
47
,
399
402
.
24.
Ruty
,
N.
(
2007
). “
Modèles d’interactions fluide parois dans le conduit vocal. applications aux voix et aux pathologies
(Models of fluid-wall interactions in the vocal tract. Applications to voice and pathologies),” Ph.D. thesis,
Institut National Polytechnique de Grenoble, Grenoble, France
, pp.
1
189
.
25.
Ruty
,
N.
,
Pelorson
,
X.
, and
Van Hirtum
,
A.
(
2008
). “
Influence of acoustic waveguides lengths on self-sustained oscillations: Theoretical prediction and experimental validation
,”
J. Acoust. Soc. Am.
123
,
3121
.
26.
Ruty
,
N.
,
Pelorson
,
X.
,
Van Hirtum
,
A.
,
Lopez-Arteaga
,
I.
, and
Hirschberg
,
A.
(
2007
). “
An invitro setup to test the relevance and the accuracy of low-order vocal folds models
,”
J. Acoust. Soc, Am.
121
,
479
490
.
27.
Ruty
,
N.
,
Van Hirtum
,
A.
,
Pelorson
,
X.
,
Lopez
,
I.
, and
Hirschberg
,
A.
(
2005
). “
A mechanical experimental setup to simulate vocal fold vibrations. preliminary results
,”
ZAS Papers in Linguistics
40
,
161
175
; also available as arXiv:0710.
28.
Steinecke
,
I.
, and
Herzel
,
H.
(
1995
). “
Bifurcations in an asymmetric vocal-fold model
,”
J. Acoust. Soc. Am.
97
,
1874
1884
.
29.
Stevens
,
K. N.
(
1998
).
Acoustic Phonetics
(
The MIT Press
,
Cambridge, MA
), p.
288
.
30.
Svec
,
J. G.
,
Schutte
,
H. K.
, and
Miller
,
D. G.
(
1999
). “
On pitch jumps between chest and falsetto registers in voice: Data from living and excised human larynges
,”
J. Acoust. Soc. Am.
106
,
1523
1531
.
31.
Titze
,
I. R.
(
1988
). “
The physics of small-amplitude oscillation of the vocal folds
,”
J. Acoust. Soc. Am.
83
,
1536
1552
.
32.
Titze
,
I. R.
(
1994
).
Principles of Voice Production
(
Prentice-Hall
,
Englewood Cliffs, NJ
), pp.
252
271
.
33.
Titze
,
I. R.
(
2008a
). “
Nonlinear-source-filter coupling in phonation: Theory
,”
J. Acoust. Soc. Am.
123
,
2733
2749
.
34.
Titze
,
I. R.
(
2008b
). “
Nonlinear source-filter coupling in phonation: Vocal exercises
,”
J. Acoust. Soc. Am.
123
,
1902
1915
.
35.
Tokuda
,
I. T.
,
Horaceck
,
J.
,
Svec
,
J. G.
, and
Herzel
,
H.
(
2007
). “
Comparison of biomechanical modeling of register transitions and voice instabilities with excised larynx experiments
,”
J. Acoust. Soc. Am.
122
,
519
531
.
36.
Tokuda
,
I. T.
,
Zemke
,
M.
,
Kob
,
M.
, and
Herzel
,
H.
(
2010
). “
Biomechanical modeling of register transitions and the role of vocal tract resonators
,”
J. Acoust. Soc. Am.
127
,
1528
1536
.
37.
Whalen
,
D. H.
, and
Levitt
,
A. G.
(
1995
). “
The universality of intrinsic F0 of vowels
,”
J. Phonetics
23
,
349
366
.
40.
Zhang
,
Y.
,
Jiang
,
J.
, and
Rahn
,
D. A.
(
2005
). “
Studying vocal fold vibrations in Parkinson’s disease with a nonlinear model
,”
Chaos
15
,
033903
.
38.
Zhang
,
Z.
,
Neubauer
,
J.
, and
Berry
,
D. A.
(
2006
). “
The influence of subglottal acoustics on laboratory models of phonation
,”
J. Acoust. Soc. Am.
120
,
1558
1569
.
39.
Zhang
,
Z.
,
Neubauer
,
J.
, and
Berry
,
D. A.
(
2009
). “
Influence of vocal fold stiffness and acoustic loading on flow-induced vibration of a single-layer vocal fold model
,”
J. Sound Vib.
322
,
299
313
.
41.
Zollinger
,
S. A.
,
Riede
,
T.
, and
Suthers
,
R. A.
(
2008
). “
Two-voice complexity from a single side of the syrinx in northern mockingbird Mimus polyglottos vocalizations
,”
J. Exp. Biol.
211
,
1978
1991
.
You do not currently have access to this content.