The acoustic posterior shadowing effects of bubbles influence the accuracy for defining the location and range of ablated thermal lesions during focused ultrasound surgery when using ultrasonic monitoring imaging. This paper explored the feasibility of using Nakagami distribution to evaluate the ablated region induced by focused ultrasound exposures at different acoustic power levels in transparent tissue-mimicking phantoms. The mean value of the Nakagami parameter m was about 0.5 in the cavitation region and increased to around 1 in the ablated region. Nakagami images were not subject to significant shadowing effects of bubbles. Ultrasound-induced thermal lesions observed in the photos and Nakagami images were overshadowed by bubbles in the B-mode images. The lesion size predicted in the Nakagami images was smaller than that predicted in the photos due to the sub resolvable effect of Nakagami imaging at the interface. This preliminary study on tissue-mimicking phantom suggested that the Nakagami parameter m may have the potential use in evaluating the formation of ultrasound-induced thermal lesion when the shadowing effect of bubbles is strong while the thermal lesion was small. Further studies in vivo and in vitro will be needed to evaluate the potential application.

1.
J.
Bohannon
, “
Ultrasound uses in medicine heat up
,”
Science
321
,
338
339
(
2008
).
2.
G. R.
ter Haar
, “
Therapeutic application of ultrasound
,”
Prog. Biophys. Mol. Biol.
93
,
111
129
(
2007
).
3.
J. E.
Kennedy
, “
High-intensity focused ultrasound in the treatment of solid tumours
,”
Nat. Rev. Cancer
5
,
321
327
(
2005
).
4.
V.
Zderic
,
A.
Keshavarzi
,
M. L.
Noble
,
M.
Paun
,
S. R.
Sharar
,
L. A.
Crum
,
R. W.
Martin
, and
S.
Vaezy
, “
Hemorrhage control in arteries using high-intensity focused ultrasound: a survival study
,”
Ultrasonics
44
,
46
53
(
2006
).
5.
W. J.
Tyler
,
Y.
Tufail
, and
S.
Pati
, “
Pain: noninvasive functional neurosurgery using ultrasound
,”
Nat. Rev. Neurology
6
,
13
14
(
2010
).
6.
Y.
Hertzberg
,
A.
Volovick
,
Y.
Zur
,
Y.
Medan
,
S.
Vitek
, and
G.
Navon
, “
Ultrasound focusing using magnetic resonance acoustic radiation force imaging: application to ultrasound transcranial therapy
,”
Med. Phys.
37
,
2934
2942
(
2010
).
7.
N.
McDannold
,
M.
Tempany
,
M.
Fennessy
,
J.
So
,
J.
Rybicki
,
A.
Stewart
,
A.
Jolesz
, and
K.
Hynynen
, “
Uterine leiomyomas: MR imaging-based thermometry and thermal dosimetry during focused ultrasound thermal ablation
,”
Radiology
240
,
263
272
(
2006
).
8.
C.
Damianou
,
K.
Ioannides
,
V.
Hadjisavvas
,
N.
Mylonas
,
A.
Couppis
, and
D.
Iosif
, “
In vitro and in vivo brain ablation created by high-intensity focused ultrasound and monitored by MRI
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
56
,
1189
1198
(
2009
).
9.
B.
Quesson
,
M.
Merle
,
M.
Kohler
,
R.
Sebastien
,
D. S.
Baudouin
, and
T. M.
Chrit
, “
A method for MRI guidance of intercostal high intensity focused ultrasound ablation in the liver
,”
Med. Phys.
37
,
2533
2540
(
2010
).
10.
A.
Hacker
,
S.
Chauhan
,
K.
Peters
,
R.
Hildenbrand
,
E.
Marlinghaus
,
P.
Alken
, and
M. S.
Michel
, “
Multiple high-intensity focused ultrasound probes for kidney-tissue ablation
,”
J. Endourol
19
,
1036
1040
(
2005
).
11.
L.
Mearini
,
L.
D’Urso
,
D.
Collura
,
A.
Zucchi
,
E.
Costantini
,
A.
Formiconi
,
V.
Bini
,
G.
Muto
, and
M.
Porena
, “
Visually directed transrectal high intensity focused ultrasound for the treatment of prostate cancer: a preliminary report on the Italian experience
,”
J. Urol.
181
,
105
112
(
2009
).
12.
Z. L.
Xu
,
X. Q.
Zhu
,
P.
Lu
,
Q.
Zhou
,
J.
Zhang
, and
F.
Wu
, “
Activation of tumor-infiltrating antigen presenting cells by high intensity focused ultrasound ablation of human breast cancer
,”
Ultrasound Med. Biol.
35
,
50
57
(
2009
).
13.
K.
Hynynen
,
N.
McDannold
,
G.
Clement
,
F. A.
Jolesz
,
E.
Zadicario
,
R.
Killiany
,
T.
Moore
, and
D.
Rosen
, “
Pre-clinical testing of a phased array ultrasound system for MRI-guided noninvasive surgery of the brain-a primate study
,”
Eur. J. Radiol.
59
,
149
156
(
2006
).
14.
J.
Jagannathan
,
N. T.
Sanghvi
,
L. A.
Crum
,
C. P.
Yen
,
R.
Medel
,
A. S.
Dumont
,
J. P.
Sheehan
,
L.
Steiner
,
F.
Jolesz
, and
N. F.
Kassell
, “
High-intensity focused ultrasound surgery of the brain: part 1-A Historical perspective with modern applications
,”
Neurosurgery
64
,
201
210
(
2009
).
15.
K.
Hynynen
, “
MRI-guided focused ultrasound treatments
,”
Ultrasonics
50
,
221
229
(
2010
).
16.
L.
Curiel
,
R.
Chopra
, and
K.
Hynynen
, “
In vivo monitoring of focused ultrasound surgery using local harmonic motion
,”
Ultrasound Med. Biol.
35
,
65
78
(
2009
).
17.
S. Y.
Zhang
,
M. X.
Wan
,
H.
Zhong
,
C.
Xu
,
Z. Z.
Liao
,
H. Q.
Liu
, and
S. P.
Wang
, “
Dynamic changes of integrated backscatter, attenuation coefficient and bubble activities during high-intensity focused ultrasound (HIFU) treatment
,”
Ultrasound Med. Biol.
35
,
1828
1844
(
2009
).
18.
G. L.
Ye
,
G. L. P. P.
Smith
, and
J. A.
Noble
, “
Model-based ultrasound temperature visualization during and following HIFU exposure
,”
Ultrasound Med. Biol.
36
,
234
249
(
2010
).
19.
K.
Hynynen
,
A.
Darkazanli
,
E.
Unger
, and
J. F.
Schenck
, “
MRI-guided noninvasive ultrasound surgery
,”
Med Phys.
20
,
107
115
(
1993
).
20.
A. H.
Chung
,
K.
Hynynen
,
V.
Colucci
,
K.
Oshio
,
H. E.
Cline
, and
F. A.
Jolesz
, “
Optimization of spoiled gradient-echo phase imaging for in vivo localization of a focused ultrasound beam
,”
Magn. Reson. Med.
36
,
745
752
(
1996
).
21.
C.
Bohris
,
W. G.
Schreiber
,
J.
Jenne
,
I.
Simiantonakis
,
R.
Rastert
,
H. J.
Zabel
,
P.
Huber
,
R.
Bader
, and
G.
Brix
, “
Quantitative MR temperature monitoring of high-intensity focused ultrasound therapy
,”
Magn. Reson. Imaging
17
,
603
610
(
1999
).
22.
E.
Samset
, “
Temperature mapping of thermal ablation using MRI
,”
Minimally Invasive Ther. Allied Technol.
15
,
36
41
(
2006
).
23.
H.
Furusawa
,
K.
Namba
,
S.
Thomsen
,
F.
Akiyama
,
A.
Bendet
,
C.
Tanaka
,
Y.
Yasuda
, and
H.
Nakahara
, “
Magnetic resonance-guided focused ultrasound surgery of breast cancer: reliability and effectiveness
,”
J. Am. Coll. Surg.
203
,
54
63
(
2006
).
24.
A.
Chapman
and
G. R.
Haar
, “
Thermal ablation of uterine fibroids using MR – guided focused ultrasound – a truly non Chapman invasive treatment modality
,”
Eur. Radiol.
5
,
125
137
(
2007
).
25.
C.
Simon
,
P.
VanBaren
, and
E. S.
Ebbini
, “
Two-dimensional temperature estimation using diagnostic ultrasound
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
45
,
1088
1099
(
1998
).
26.
R.
Souchon
,
G.
Bouchoux
, and
E.
Maciejko
, “
Monitoring the formation of thermal lesions with heat-induced echo-strain imaging: a feasibility study
,”
Ultrasound Med. Biol.
31
,
251
259
(
2005
).
27.
B. A.
Rabkin
,
V.
Zderic
,
L. A.
Crum
, and
S.
Vaezy
, “
Biological and physical mechanisms of HIFU-induced hyperecho in ultrasound images
,”
Ultrasound Med. Biol.
32
,
1721
1729
(
2006
).
28.
T. H.
Yu
and
G. S.
Xu
, “
Hyperecho as the indicator of tissue necrosis during microbubble-assisted high intensity focused ultrasound: Sensitivity, specificity and predictive value
,”
Ultrasound Med. Biol.
34
,
1343
1347
(
2008
).
29.
V.
Zderic
,
A.
Keshavarzi
, and
M. A.
Andrew
, “
Attenuation of porcine tissues in vivo after high-intensity ultrasound treatment
,”
Ultrasound Med. Biol.
30
,
61
66
(
2004
).
30.
H.
Zhong
,
M. X.
Wan
,
Y. F.
Jiang
, and
S. P.
Wang
, “
Monitoring imaging of lesions induced by high intensity focused ultrasound based on differential ultrasonic attenuation and integrated backscatter estimation
,”
Ultrasound Med. Biol.
33
,
82
94
(
2007
).
31.
X. Z.
Liu
,
J. L.
Li
,
X. F.
Gong
, and
D.
Zhang
, “
Nonlinear absorption in biological tissue for high intensity focused ultrasound
,”
Ultrasonics
44
,
e27
e30
(
2006
).
32.
M.
Zhang
,
B.
Castaneda
, and
J.
Christensen
, “
Real-time sonoelastography of hepatic thermal lesions in a swine model
,”
Med. Phys.
35
,
4132
4141
(
2008
).
33.
V. A.
Khokhlova
,
M. R.
Bailey
,
J. A.
Reed
,
B. W.
Cunitz
,
P. J.
Kaczkowski
, and
L. A.
Crum
, “
Effects of nonlinear propagation, cavitation, and boiling in lesion formation by high intensity focused ultrasound in a gel phantom
,”
J. Acoust. Soc. Am.
119
,
1834
1848
(
2006
).
34.
S. Y.
Zhang
,
T.
Ding
,
M. X.
Wan
,
H. J.
Jiang
,
X.
Yang
,
H.
Zhong
, and
S. P.
Wang
, “
Minimizing the thermal losses from perfusion during focused ultrasound exposures with flowing microbubbles
,”
J. Acoust. Soc. Am.
129
,
2336
2344
(
2011
).
35.
C. C.
Coussios
,
C. H.
Farny
,
G. R.
ter Haar
, and
R. A.
Roy
, “
Role of acoustic cavitation in the delivery and monitoring of cancer treatment by high-intensity focused ultrasound (HIFU)
,”
Int. J. Hyperthermia
23
,
105
120
(
2007
).
36.
T. D.
Khokhlova
,
M. S.
Canney
,
D.
Lee
,
K. I.
Marro
,
L. A.
Crum
,
V. A.
Khokhlova
, and
M. R.
Bailey
, “
Magnetic resonance imaging of boiling induced by high intensity focused ultrasound
,”
J. Acoust. Soc. Am.
125
,
2420
2431
(
2009
).
37.
P. M.
Shankar
, “
A general statistical model for ultrasonic backscattering from tissues
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
47
,
727
736
(
2000
).
38.
P. M.
Shankar
,
V. A.
Dumane
,
J. M.
Reid
,
V.
Genis
,
F.
Forsberg
,
C. W.
Piccoli
, and
B. B.
Goldberg
, “
Classification of ultrasonic B-mode images of breast masses using Nakagami distribution
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
48
,
569
580
(
2001
).
39.
P. M.
Shankar
, “
Ultrasonic tissue characterization using a generalized Nakagami model
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
48
,
1716
1720
(
2001
).
40.
V. A.
Dumane
,
P. M.
Shankar
,
C. W.
Piccoli
,
J. M.
Reid
,
V.
Genis
,
F.
Forsberg
, and
B. B.
Goldberg
, “
Classification of ultrasonic B mode images of the breast using frequency diversity and Nakagami statistics
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
49
,
664
668
(
2002
).
41.
P. M.
Shankar
, “
A compound scattering pdf for the ultrasonic echo envelope and its relationship to K and Nakagami distributions
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
50
,
339
343
(
2003
).
42.
C. C.
Huang
,
P. H.
Tsui
, and
S. H.
Wang
, “
Detection of coagulating blood under steady flow by statistical analysis of backscattered signals
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
54
,
435
442
(
2007
).
43.
P. H.
Tsui
,
C. K.
Yeh
, and
C. C.
Chang
, “
Microvascular flow estimation by contrast-assisted ultrasound B-scan and statistical parametric images
,”
IEEE Trans. Inf. Technol. Biomed.
13
,
360
369
(
2009
).
44.
P. H.
Tsui
,
C. W.
Hsu
,
M. C.
Ho
,
Y. S.
Chen
,
J. J.
Lin
,
C. C.
Chang
, and
C. C.
Chu
, “
Three-dimensional ultrasonic Nakagami imaging for tissue characterization
,”
Phys. Med. Biol.
55
,
5849
5866
(
2010
).
45.
P. H.
Tsui
,
Y. Y.
Liao
,
C. C.
Chang
,
W. H.
Kuo
,
K. J.
Chang
, and
C. K.
Yeh
, “
Classification of benign and malignant breast tumors by 2-D analysis based on contour description and scatterer characterization
,”
IEEE Trans. Med. Imaging
29
,
513
522
(
2010
).
46.
P. H.
Tsui
,
C. C.
Huang
,
C. C.
Chang
,
S. H.
Wang
, and
K. K.
Shung
, “
Feasibility study of using high-frequency ultrasonic Nakagami imaging for characterizing the cataract lens in vitro
,”
Phys. Med. Biol.
52
,
6413
6425
(
2007
).
47.
F.
Destrempes
,
J.
Meunier
,
M. F.
Giroux
,
G.
Soulez
, and
G.
Cloutier
, “
Segmentation in ultrasonic B-Mode images of healthy carotid arteries using mixtures of Nakagami distributions and stochastic optimization
,”
IEEE Trans. Med. Imaging
28
,
215
229
(
2009
).
48.
F.
Destrempes
,
J.
Meunier
,
M. F.
Giroux
,
G.
Soulez
, and
G.
Cloutier
, “
Segmentation of plaques in sequences of ultrasonic B-Mode images of carotid arteries based on motion estimation and a bayesian model
,”
IEEE Trans. Biomed. Eng.
58
,
2202
2211
(
2011
).
49.
F.
Destrempes
and
G.
Cloutier
, “
A critical review and uniformized representation of statistical distributions modeling the ultrasound echo envelope
,”
Ultrasound Med. Biol.
36
,
1037
1051
(
2010
).
50.
W. S.
Chen
,
A. A.
Brayman
,
T. J.
Matula
,
L. A.
Crum
, and
M. W.
Miller
, “
The pulse length-dependence of inertial cavitation dose and hemolysis
,”
Ultrasound Med. Biol.
29
,
739
748
(
2003
).
51.
J.
McLaughlan
,
I.
Rivens
,
T.
Leighton
, and
G.
ter Haar
, “
A study of bubble activity generated in ex vivo tissue by high intensity focused ultrasound
,”
Ultrasound Med. Biol.
36
,
1327
1344
(
2010
).
52.
M. Z.
Lu
,
M. X.
Wan
,
F.
Xu
,
X. D.
Wang
, and
H.
Zhong
, “
Focused beam control for ultrasound surgery with spherical-section phased array: Sound field calculation and genetic optimization algorithm
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
52
,
1270
1290
(
2005
).
53.
J. L.
Foley
,
S.
Vaezy
, and
L. A.
Crum
, “
Applications of high-intensity focused ultrasound in medicine: Spotlight on neurological applications
,”
Appl. Acoust.
68
,
245
259
(
2007
).
54.
P. H.
Tsui
,
C. K.
Yeh
,
C. C.
Chang
, and
Y. Y.
Liao
, “
Classification of breast masses by ultrasonic Nakagami imaging: a feasibility study
,”
Phys. Med. Biol.
53
,
6027
6044
(
2008
).
You do not currently have access to this content.