The simulation of nonlinear ultrasound propagation through tissue realistic media has a wide range of practical applications. However, this is a computationally difficult problem due to the large size of the computational domain compared to the acoustic wavelength. Here, the k-space pseudospectral method is used to reduce the number of grid points required per wavelength for accurate simulations. The model is based on coupled first-order acoustic equations valid for nonlinear wave propagation in heterogeneous media with power law absorption. These are derived from the equations of fluid mechanics and include a pressure-density relation that incorporates the effects of nonlinearity, power law absorption, and medium heterogeneities. The additional terms accounting for convective nonlinearity and power law absorption are expressed as spatial gradients making them efficient to numerically encode. The governing equations are then discretized using a k-space pseudospectral technique in which the spatial gradients are computed using the Fourier-collocation method. This increases the accuracy of the gradient calculation and thus relaxes the requirement for dense computational grids compared to conventional finite difference methods. The accuracy and utility of the developed model is demonstrated via several numerical experiments, including the 3D simulation of the beam pattern from a clinical ultrasound probe.

1.
T. L.
Szabo
,
Diagnostic Ultrasound Imaging
(
Elsevier
,
Burlington
,
2004
), pp.
4
6
.
2.
G. F.
Pinton
,
J.
Dahl
,
S.
Rosenzweig
, and
G. E.
Trahey
, “
A heterogeneous nonlinear attenuating full-wave model of ultrasound
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
56
,
474
488
(
2009
).
3.
J.
Huijssen
and
M. D.
Verweij
, “
An iterative method for the computation of nonlinear, wide-angle, pulsed acoustic fields of medical diagnostic transducers
,”
J. Acoust. Soc. Am.
127
,
33
44
(
2010
).
4.
V. W.
Sparrow
and
R.
Raspet
, “
A numerical method for general finite amplitude wave propagation in two dimensions and its application to spark pulses
,”
J. Acoust. Soc. Am.
90
,
2683
2691
(
1991
).
5.
J. A.
Jensen
, “
A model for the propagation and scattering of ultrasound in tissue
,”
J. Acoust. Soc. Am.
89
,
182
190
(
1991
).
6.
M.
Tabei
,
T. D.
Mast
, and
R. C.
Waag
,
“A k-space method for coupled first-order acoustic propagation equations
,”
J. Acoust. Soc. Am.
111
,
53
63
(
2002
).
7.
Nonlinear Acoustics
, edited by
M. F.
Hamilton
and
D. T.
Blackstock
(
Acoustical Society of America
,
Melville
,
2008
), pp.
1
455
.
8.
G.
Taraldsen
, “
A generalized Westervelt equation for nonlinear medical ultrasound
,”
J. Acoust. Soc. Am.
109
,
1329
1333
(
2001
).
9.
F.
Coulouvrat
, “
New equations for nonlinear acoustics in a low Mach number and weakly heterogeneous atmosphere
,”
Wave Motion
49
,
50
63
(
2012
).
10.
I. M.
Hallaj
,
R. O.
Cleveland
, and
K.
Hynynen
, “
Simulations of the thermo-acoustic lens effect during focused ultrasound surgery
,”
J. Acoust. Soc. Am.
109
,
2245
2253
(
2001
).
11.
Y.
Jing
and
R. O.
Cleveland
, “
Modeling the propagation of nonlinear three-dimensional acoustic beams in inhomogeneous media
,”
J. Acoust. Soc. Am.
122
,
1352
1364
(
2007
).
12.
M. D.
Verweij
and
J.
Huijssen
, “
A filtered convolution method for the computation of acoustic wave fields in very large spatiotemporal domains
,”
J. Acoust. Soc. Am.
125
,
1868
1878
(
2009
).
13.
Y.
Jing
and
G. T.
Clement
, “
A k-space method for nonlinear wave propagation
,” arXiv:1105.2210.
14.
M. V.
Averyanov
,
V. A.
Khokhlova
,
O. A.
Sapozhnikov
,
P.
Blanc-Benon
, and
R. O.
Cleveland
, “
Parabolic equation for nonlinear acoustic wave propagation in inhomogeneous moving media
,”
Acoust. Phys.
52
,
623
632
(
2006
).
15.
D. T.
Blackstock
, “
Generalized Burgers equation for plane waves
,”
J. Acoust. Soc. Am.
77
,
2050
2053
(
1985
).
16.
T. L.
Szabo
, “
Time domain nonlinear wave equations for lossy media
,” in
Advances in Nonlinear Acoustics: Proceedings of the 13th International Symposium on Nonlinear Acoustics
(
World Scientific
,
Singapore
,
1993
), pp.
89
94
.
17.
T. L.
Szabo
, “
Time domain wave equations for lossy media obeying a frequency power law
,”
J. Acoust. Soc. Am.
96
,
491
500
(
1994
).
18.
J.
Tavakkoli
,
D.
Cathignol
,
R.
Souchon
, and
O. A.
Sapozhnikov
, “
Modeling of pulsed finite-amplitude focused sound beams in time domain
,”
J. Acoust. Soc. Am.
104
,
2061
2072
(
1998
).
19.
J.
Wojcik
, “
Conservation of energy and absorption in acoustic fields for linear and nonlinear propagation
,”
J. Acoust. Soc. Am.
104
,
2654
(
1998
).
20.
W.
Chen
and
S.
Holm
, “
Fractional Laplacian time-space models for linear and nonlinear lossy media exhibiting arbitrary frequency power-law dependency
,”
J. Acoust. Soc. Am.
115
,
1424
1430
(
2004
).
21.
W.
Chen
and
S.
Holm
, “
Fractional Laplacian, Levy stable distribution, and time-space models for linear and nonlinear frequency-dependent lossy media
,” Technical Report, Research Report of Simula Research Laboratory (
2002
).
22.
B. E.
Treeby
and
B. T.
Cox
, “
Modeling power law absorption and dispersion for acoustic propagation using the fractional Laplacian
,”
J. Acoust. Soc. Am.
127
,
2741
2748
(
2010
).
23.
B. E.
Treeby
and
B. T.
Cox
, “
A k-space Greens function solution for acoustic initial value problems in homogeneous media with power law absorption
,”
J. Acoust. Soc. Am.
129
,
3652
3660
(
2011
).
24.
H. A. H.
Jongen
,
J. M.
Thijssen
,
M.
van den Aarssen
, and
W. A.
Verhoef
, “
A general model for the absorption of ultrasound by biological tissues and experimental verification
,”
J. Acoust. Soc. Am.
79
,
535
540
(
1986
).
25.
A. I.
Nachman
,
J. F.
Smith
 III
, and
R. C.
Waag
, “
An equation for acoustic propagation in inhomogeneous media with relaxation losses
,”
J. Acoust. Soc. Am.
88
,
1584
1595
(
1990
).
26.
R. O.
Cleveland
,
M. F.
Hamilton
, and
D. T.
Blackstock
, “
Time-domain modeling of finite-amplitude sound in relaxing fluids
,”
J. Acoust. Soc. Am.
99
,
3312
3318
(
1996
).
27.
S. P.
Nasholm
and
S.
Holm
, “
Linking multiple relaxation, power-law attenuation, and fractional wave equations
,”
J. Acoust. Soc. Am.
130
,
3038
3045
(
2011
).
28.
M. J.
Lighthill
,
“Viscosity effects in sound waves of finite amplitudes,”
in
Surveys in Mechanics
, edited by
G. K.
Batchelor
and
R. M.
Davies
(
Cambridge University Press
,
Cambridge
,
1956
), pp.
250
351
.
29.

In a fluid model at equilibrium, a heterogeneous ambient density physically requires a body force to support it. In soft tissue this could be provided, for example, by stresses in the extracellular matrix. As the fluid is stationary in the ambient state, this body force must be matched by a gradient in the ambient pressure, where p0=ρ0f. Because these terms exactly cancel, they are not included in the dynamic momentum equation given in Eq. (2a).

30.
A. D.
Pierce
,
“Mathematical theory of wave propagation,”
in
Handbook of Acoustics
, edited by
M. J.
Crocker
(
Wiley
,
New York
,
1998
), pp.
21
37
.
31.
F.
Prieur
and
S.
Holm
, “
Nonlinear acoustic wave equations with fractional loss operators
,”
J. Acoust. Soc. Am.
130
,
1125
1132
(
2011
).
32.
Y.
Jing
,
D.
Shen
, and
G. T.
Clement
, “
Verification of the Westervelt equation for focused transducers
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
58
,
1097
1101
(
2011
).
33.
S. I.
Aanonsen
,
T.
Barkve
,
J. N.
Tjotta
, and
S.
Tjotta
, “
Distortion and harmonic generation in the nearfield of a finite amplitude sound beam
,”
J. Acoust. Soc. Am.
75
,
749
768
(
1984
).
34.
M. F.
Hamilton
and
D. T.
Blackstock
, “
On the linearity of the momentum equation for progressive plane waves of finite amplitude
,”
J. Acoust. Soc. Am.
88
,
2025
2026
(
1990
).
35.

Subtly, this means the acoustic density calculated by the discrete equations is not exactly equal to the true acoustic density as defined in the general conservation equations. However, because the acoustic density is not generally used for output, this difference does not affect the accuracy of the simulations.

36.
B. E.
Treeby
,
M.
Tumen
, and
B. T.
Cox
,
“Time domain simulation of harmonic ultrasound images and beam patterns in 3D using the k-space pseudospectral method,”
in
Medical Image Computing and Computer-Assisted Intervention, Part I
(
Springer
,
Heidelberg
,
2011
), Vol.
6891
, pp.
363
370
.
37.
T. D.
Mast
,
L. P.
Souriau
,
D.-L. D.
Liu
,
M.
Tabei
,
A. I.
Nachman
, and
R. C.
Waag
, “
A k-space method for large-scale models of wave propagation in tissue
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
48
,
341
354
(
2001
).
38.
J.-P.
Berenger
, “
Three-dimensional perfectly matched layer for the absorption of electromagnetic waves
,”
J. Comput. Phys.
127
,
363
379
(
1996
).
39.
B. T.
Cox
,
S.
Kara
,
S. R.
Arridge
, and
P. C.
Beard
, “
k-space propagation models for acoustically heterogeneous media: Application to biomedical photoacoustics
,”
J. Acoust. Soc. Am.
121
,
3453
3464
(
2007
).
40.
B. E.
Treeby
and
B. T.
Cox
, “
k-Wave: matlab toolbox for the simulation and reconstruction of photoacoustic wave fields
,”
J. Biomed. Opt.
15
,
021314
(
2010
).
41.
J. P.
Boyd
,
Chebyshev and Fourier Spectral Methods
(
Dover
,
Mineola, NY
,
2001
), pp.
202
221
.
42.
Y.
Jing
,
F. C.
Meral
, and
G. T.
Clement
, “
Time-reversal transcranial ultrasound beam focusing using a k-space method
,”
Phys. Med. Biol.
57
,
901
917
(
2012
).
43.
J. S.
Mendousse
, “
Nonlinear dissipative distortion of progressive sound waves at moderate amplitudes
,”
J. Acoust. Soc. Am.
25
,
51
54
(
1953
).
44.
R. J.
McGough
, “
Rapid calculations of time-harmonic nearfield pressures produced by rectangular pistons
,”
J. Acoust. Soc. Am.
115
,
1934
1941
(
2004
).
45.
J.
Jaros
,
B. E.
Treeby
, and
A. P.
Rendell
, “
Use of multiple GPUs on shared memory multiprocessors for ultrasound propagation simulations
,” in
10th Australasian Symposium on Parallel and Distributed Computing
, edited by
J.
Chen
and
R.
Ranjan
,
ACS
(
2012
), Vol.
127
, pp.
43
52
.
You do not currently have access to this content.